Why is dlgradient giving different answers?

2 visualizzazioni (ultimi 30 giorni)
When I use the dlgradient function to compute the gradient of the expression (Parameters.fc2.Weights * tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias) + Parameters.fc2.Bias) with respect to Parameters.fc2.Bias, it yields varying results instead of a consistent value of 1. According to theoretical calculations, it should be 1, but for different values of y(:,i), I observe discrepancies. What might be the issue?
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
gradient1.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
gradient2.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
  1 Commento
Matt J
Matt J il 18 Dic 2023
Attach Parameters and y in a .mat file so we can test your code.

Accedi per commentare.

Risposta accettata

Angelo Yeo
Angelo Yeo il 18 Dic 2023
You can try to incorporate dlfeval when using dlgradient. You can get the results of 1's as expected.
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
[res1, res2] = dlfeval(@gradFun, Parameters, y)
res1 =
1×1 single dlarray 1
res2 =
1×1 single dlarray 1
function [res1, res2] = gradFun(Parameters, y)
res1 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
res2 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
end
function weights = initializeGlorot(sz,numOut,numIn)
Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (numIn + numOut));
weights = bound * Z;
weights = dlarray(weights);
end
function parameter = initializeZeros(sz)
parameter = zeros(sz,'single');
parameter = dlarray(parameter);
end

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by