Computation of distance of a set of points from a fitting curve (of 2n grade like a parabola).
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hi everybody, It seems to be an easy problem but I m in trouble:
I have to compute the distance btw the black points (distance for each of these points)( which have vector coordinates (flowrate, pPHeadLoss) ) from the red curve that is the fitting curve which has as coordinates the row vectors ((min(flowrate):0.0001:max(flowrate), y)
Actually I am truing to use pdist function but it doesnt work for me, what am I wrong?
Thanks in advance
[y,delta] = polyval(p, (min(flowrate):0.0001:max(flowrate)),S,mu);
% FIT
plot(min(flowrate):0.0001:max(flowrate), y , 'r'); % red curve
The full code is the next one:
flowdata = readtable("flodata.txt");
% column 1: pressure at pipe start [bars]
% column 2: acoustic noise at start [standard deviation]
% column 3: pressure at pipe end (10km from start) [bars]
% column 4: acoustic noise at pipe end[standard deviation]
% column 5: flow rate [m3/hour]
load('flowdata.mat');
% summary(flowdata)
% Vectors of Pressures
pressureIN = flowdata.pressureAtPipeStart_bars_;
pressureOUT= flowdata.pressureAtPipeEnd_10kmFromStart__bars_;
% Vectors of Acoustic Noises at IN and at OUT
aNoiseIN=flowdata.acousticNoiseAtStart_standardDeviation_;
aNoiseOUT=flowdata.acousticNoiseAtPipeEnd_standardDeviation_;
% Vector of flowrate
flowrate = flowdata.flowRate_m3_hour_;
% % Table of flowRate
% flowRate = table(flowrate);
% rawData = [pressureIN aNoiseIN pressureOUT aNoiseOUT flowrate];
% t = (linspace(0, length(cleanData)*10, length(cleanData)))/86400;
sample_distance = 10;
%t = (linspace(0, 7948790, 794879))/86400;
[samples,channels] = size(flowdata);
t = linspace(0, samples*sample_distance, samples)/86400;
% all main curves overlaid
figure()
plot(t, pressureIN, '-g',t, pressureOUT, '-r',t, flowrate, '-b');
axis tight;
title(' Input , Output Pressure , FR vs time');
legend('Input Pressure','Output Pressure','Flow Rate');
xlabel('Tempo [Days]');
ylabel('all');
PHeadLoss = pressureIN-pressureOUT;
densityplot(flowrate, PHeadLoss, [100,100])
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
rawData = [pressureIN pressureOUT flowrate];
% TOLGO I NaN
% Creo un array di indici logici che indica quali righe contengono almeno un NaN
idx_nan = any(isnan(rawData), 2);
cleanData = rawData;
% Elimino le righe selezionate
cleanData(idx_nan, :) = [];
[samples,channels] = size(cleanData);
t = linspace(0, samples*sample_distance, samples)/86400;
% Vectors of Pressures
pressureIN = cleanData(:,1);
pressureOUT= cleanData(:,2);
flowrate = cleanData(:,3);
PHeadLoss = pressureIN - pressureOUT;
%DATA
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
hold on
%densityplot(flowrate, PHeadLoss, [50,50]);
[p, S, mu] = polyfit(flowrate, PHeadLoss, 2)
[y,delta] = polyval(p,flowrate,S,mu);
%LINEAR FIT
plot(flowrate, y, 'r-');
%hold on
% Linear Fit of Data with 95% Prediction Interval
%plot(flowrate,y+2*delta,'m--',flowrate,y-2*delta,'m--')
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
densityplot(flowrate, PHeadLoss, [100,100])
% TOLGO I VALORI NEGATIVI
% Creo un array di indici logici che indica quali righe hanno almeno un valore negativo
idx_neg = any(cleanData < 0, 2);
cleanData = cleanData;
% Elimino le righe selezionate
cleanData(idx_neg, :) = [];
[samples,channels] = size(cleanData);
t = linspace(0, samples*sample_distance, samples)/86400;
pressureIN = cleanData(:,1);
pressureOUT= cleanData(:,2);
flowrate = cleanData(:,3);
PHeadLoss = pressureIN - pressureOUT;
%DATA
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
hold on
%densityplot(flowrate, PHeadLoss, [50,50]);
[p, S, mu] = polyfit(flowrate, PHeadLoss, 2)
[y,delta] = polyval(p,flowrate,S,mu);
%LINEAR FIT
plot(flowrate, y, 'r-');
%hold on
% Linear Fit of Data with 95% Prediction Interval
%plot(flowrate,y+2*delta,'m--',flowrate,y-2*delta,'m--')
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
densityplot(flowrate, PHeadLoss, [100,100])
% % Table of flowRate
% flowRate = table(flowrate);
% rawData = [pressureIN aNoiseIN pressureOUT aNoiseOUT flowrate];
% t = (linspace(0, length(cleanData)*10, length(cleanData)))/86400;
sample_distance = 10;
%t = (linspace(0, 7948790, 794879))/86400;
[samples,channels] = size(cleanData);
t = linspace(0, samples*sample_distance, samples)/86400;
% all main curves overlaid
figure()
plot(t, pressureIN, '-g',t, pressureOUT, '-r',t, flowrate, '-b');
axis tight;
title(' Input , Output Pressure , FR vs time');
legend('Input Pressure','Output Pressure','Flow Rate');
xlabel('Tempo [Days]');
ylabel('all');
% Prima considerazione
% large variations on the output pressure can be seen at days 1 to 15 ,
% not related to input pression
% we should not use that portion of the data
% It's a brutal cleaning but...
% I am sceptical about what happens during the first 15 days :
% lots of peaks are seen on the output pressure side that are
% not reflected / correlated to the input side ,
% so I prefer to discard the first 20 days (yes it's brutal !)
ind = t>13;
t = t(ind);
pressureIN = pressureIN(ind);
pressureOUT = pressureOUT(ind);
flowrate = flowrate(ind);
PHeadLoss = pressureIN-pressureOUT;
figure()
plot(t, pressureIN, '-g',t, pressureOUT, '-r',t, flowrate, '-b');
axis tight;
title(' Input , Output Pressure , FR vs time');
legend('Input Pressure','Output Pressure','Flow Rate');
xlabel('Tempo [Days]');
ylabel('all');
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
%DATA
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
hold on
%densityplot(flowrate, PHeadLoss, [50,50]);
[p, S, mu] = polyfit(flowrate, PHeadLoss, 2)
[y,delta] = polyval(p,flowrate,S,mu);
%LINEAR FIT
plot(flowrate, y, 'r-');
%hold on
% Linear Fit of Data with 95% Prediction Interval
%plot(flowrate,y+2*delta,'m--',flowrate,y-2*delta,'m--')
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
densityplot(flowrate, y, [100,100]);
% seconda considerazione
% keep data (valid) for gradient below a certain threshold (and non zero
% FR too btw)
% i also don't like those sudden drops to zero ,
% because to me its like dividing zero by zero ,
% when you want to make a relationship between two variables ,
% I avoid using background noise data , it will blurr the result.
% This function gradient calculates the gradient of a signal,
% which is the rate of change of the signal over time.
pressureIN_grad = abs(gradient(pressureIN));
pressureOUT_grad = abs(gradient(pressureOUT));
flowrate_grad = abs(gradient(flowrate));
threshold = 0.0073;
ind1 = pressureIN_grad<threshold*max(pressureIN_grad);
ind2 = pressureOUT_grad<threshold*max(pressureOUT_grad);
ind3 = flowrate_grad<threshold*max(flowrate_grad);
ind4 = flowrate> 0;
ind = ind1 & ind2 & ind3 & ind4;
t = t(ind);
pressureIN = pressureIN(ind);
pressureOUT = pressureOUT(ind);
flowrate = flowrate(ind);
figure()
plot(t, pressureIN, '.g',t, pressureOUT, '.r',t, flowrate, '.b');
axis tight;
title(' Input , Output Pressure , FR vs time');
legend('Input Pressure','Output Pressure','Flow Rate');
xlabel('Tempo [Days]');
ylabel('all');
PHeadLoss = pressureIN - pressureOUT;
densityplot(flowrate, PHeadLoss, [50,50])
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
%DATA
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
hold on
%densityplot(flowrate, PHeadLoss, [50,50]);
[p, S, mu] = polyfit(flowrate, PHeadLoss, 2)
[y,delta] = polyval(p,flowrate,S,mu);
%LINEAR FIT
plot(flowrate, y, 'r-');
%hold on
% Linear Fit of Data with 95% Prediction Interval
%plot(flowrate,y+2*delta,'m--',flowrate,y-2*delta,'m--')
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
densityplot(flowrate, y, [50,50]);
% terza considerazione
% PRESSURE HEAD LOSS (APPROX _no fattore di attrito, flusso del fluido e
% densità del fluido)
PHeadLoss = pressureIN - pressureOUT;
% consider only positive values
ind = PHeadLoss> 0;
t = t(ind);
pressureIN = pressureIN(ind);
pressureOUT = pressureOUT(ind);
flowrate = flowrate(ind);
PHeadLoss = pressureIN - pressureOUT;
densityplot(flowrate, PHeadLoss, [50,50])
ylabel('P Head Loss');
%DATA
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
figure('Name',' PRESSURE HEAD LOSS vs FLOWRATE')
plot(flowrate, PHeadLoss, '*k');
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
hold on
%densityplot(flowrate, PHeadLoss, [50,50]);
[p, S, mu] = polyfit(flowrate, PHeadLoss, 2)
n=size(flowrate)
[y,delta] = polyval(p, (min(flowrate):0.0001:max(flowrate)),S,mu);
% FIT
plot(min(flowrate):0.0001:max(flowrate), y , 'r');
%hold on
% Linear Fit of Data with 95% Prediction Interval
%plot(flowrate,y+2*delta,'m--',flowrate,y-2*delta,'m--')
title('Pressure Head Loss vs FLOW RATE');
xlabel('flow rate');
ylabel('P Head Loss');
densityplot(flowrate, y, [50,50]);
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!