Unable to find explicit solution in Lagrangian optimization

2 visualizzazioni (ultimi 30 giorni)
I am trying to find the analytical solution to the following problem:
I tried solving it by coding the Lagrangian by hand and use solve, but Matlab prints the warning: "Unable to find explicit solution".
I used the following code:
syms e1 e2 p1 p2 rho gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)^(1/rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Do you know what I could do to solve this? Or is there a different and better way to find an analytical solution?
  1 Commento
Matt J
Matt J il 11 Feb 2024
Modificato: Matt J il 11 Feb 2024
Note that the problem can always be rewritten in the simpler form,
where x=e/E and P=p*E. This is assuming E is a known positive constant.

Accedi per commentare.

Risposta accettata

Catalytic
Catalytic il 11 Feb 2024
Modificato: Catalytic il 11 Feb 2024
An analytical solution for 0<rho<1 is -
A=[1 0;
0 1;
-1 0;
0 -1]*E;
[fval,i]=min(A*[p1;p2]);
e1=A(i,1);
e2=A(i,2);
  2 Commenti
Catalytic
Catalytic il 11 Feb 2024
Modificato: Catalytic il 11 Feb 2024
You can see this graphically by plotting the constrained region. The region always has extreme points at (), so that's where the optimum must lie.
E=1;
for rho=[0.1:0.2:0.9]
fimplicit(@(e1,e2) abs(e1).^rho + abs(e2).^rho - E.^rho, [-1.5,1.5]); hold on
end
Matt J
Matt J il 11 Feb 2024
I like it. And, in fact, because the extreme points lie at points where H(e1,e2) is not differentiable, it shows that you will never find the true solution with Lagrange multiplier analysis.

Accedi per commentare.

Più risposte (1)

Matt J
Matt J il 11 Feb 2024
If you make rho explicit, it seems to be able to find solutions. I doubt there would be a closed-form solution for general rho.
rho=2;
syms e1 e2 p1 p2 gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)
H(e1, e2) = 
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E^rho)
L(e1, e2, lambda) = 
L_e1 = diff(L,e1) == 0
L_e1(e1, e2, lambda) = 
L_e2 = diff(L,e2) == 0
L_e2(e1, e2, lambda) = 
L_lambda = diff(L,lambda) == 0
L_lambda(e1, e2, lambda) = 
system = [L_e1,L_e2,L_lambda]
system(e1, e2, lambda) = 
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
e1_s = 
e2_s = 
lambda_s = 
  4 Commenti
Matt J
Matt J il 11 Feb 2024
Even when it can be explicitly solved, the result isn't nice:
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Warning: Possibly spurious solutions.
e1_s = 
e2_s = 
lambda_s = 
Walter Roberson
Walter Roberson il 11 Feb 2024
You can eliminate the root() constructs, but the result is confusing.
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda], 'maxdegree', 3)
Warning: Possibly spurious solutions.
e1_s = 
e2_s = 
lambda_s = 

Accedi per commentare.

Categorie

Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange

Prodotti


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by