double integration for below defined problem
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
To utilize
in
, we substitute the expression for
into the integral for
, yielding an expression involving
and
. Here's the updated integral expression: 
Substituting the expression for
gives: 

Now, you can address this integral either analytically or numerically, depending on the specifics of
and the strategies employed during the evaluation of
's integral. If
is simple enough, you might be able to solve it analytically.
below my code:
% Constants and parameters
m_star = 0.5 * 9.1e-31; % Effective mass of electrons (kg)
h_bar = 1.054e-34; % Reduced Planck's constant (Joule seconds)
V_0 = 0.1; % Barrier height (eV)
V_b = 0.5; % Classical turning point (eV)
L_w = 2e-9; % Width of the barrier (m)
E_1 = 0.5; % Lower limit of the energy integral (eV)
F = 1e3; % Electric field (V/m)
k = 8.6173e-5; % Boltzmann constant (in eV/K)
T = 300; % Kelvin
% Define the function for T(E, F)
TEF = @(E, F) exp(-2 * integral(@(z) sqrt(2 * m_star / h_bar^2 * (V_0 - E - F * z)), 0, (V_b - 0.5 * F * L_w - E) / F));
% Define the Fermi-Dirac distribution function with E_F = E_1 + k * T
f = @(E) 1 ./ (1 + exp((E_1 + k * T - E) / T));
% Define the integrand
integrand = @(E, F) f(E) .* TEF(E, F);
% Numerically evaluate TEF
TEF_value = TEF(E_1, F)
% Numerically evaluate the integral
nF = integral(integrand, E_1, Inf) * m_star / (pi * h_bar^2 * L_w);
% Display the results
disp(['The value of TEF at E_1 is: ', num2str(TEF_value)]);
disp(['The value of n(F) is: ', num2str(nF)]);
it show error
0 Commenti
Risposte (1)
Torsten
il 11 Feb 2024
Spostato: Torsten
il 11 Feb 2024
% Constants and parameters
m_star = 0.5 * 9.1e-31; % Effective mass of electrons (kg)
h_bar = 1.054e-34; % Reduced Planck's constant (Joule seconds)
V_0 = 0.1; % Barrier height (eV)
V_b = 0.5; % Classical turning point (eV)
L_w = 2e-9; % Width of the barrier (m)
E_1 = 0.5; % Lower limit of the energy integral (eV)
F = 1e3; % Electric field (V/m)
k = 8.6173e-5; % Boltzmann constant (in eV/K)
T = 300; % Kelvin
% Define the function for T(E, F)
TEF = @(E, F) exp(-2 * integral(@(z) sqrt(2 * m_star / h_bar^2 * (V_0 - E - F * z)), 0, (V_b - 0.5 * F * L_w - E) / F));
% Define the Fermi-Dirac distribution function with E_F = E_1 + k * T
f = @(E) 1 ./ (1 + exp((E_1 + k * T - E) / T));
% Define the integrand
integrand = @(E, F) f(E) .* TEF(E, F);
% Numerically evaluate TEF
TEF_value = TEF(E_1, F)
% Numerically evaluate the integral
nF = integral(@(E)integrand(E,F), E_1, Inf, 'ArrayValued',1) * m_star / (pi * h_bar^2 * L_w);
% Display the results
disp(['The value of TEF at E_1 is: ', num2str(TEF_value)]);
disp(['The value of n(F) is: ', num2str(nF)]);
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!