The example used here has just one input and one output. But my test dataset has 810 imageswith 2 input images for each output/predicted image. Could you please suggest something on this matter? I have tried many things, but the model does not train well.
I will add some part of my code in later replies, just in case if someone faces the same issue in future.
I would consider having an encoder for each input image, and then combining the encoded representations in some way, typically with an additionLayer or a concatenationLayer.
If the input images are from distinct distributions, you may not want to use a shared encoder, and instead design an encoder network appropriate for each input image. Each encoder could be designed similar to the encoder from the VAE example, so the first can be an encoder that maps images to dimensional vectors , and similarly the second encoder maps images . The are hyperparameters you choose, and you can either concatenate and feed this into the decoder, or if you can add .
Impossibile completare l'azione a causa delle modifiche apportate alla pagina. Ricarica la pagina per vedere lo stato aggiornato.
Translated by
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.