Would you like guidance on how to plot the Bifurcation diagram of the van der Pol–Mathieu–Duffing oscillator against the excitation frequency Omega around principal parametric
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
EQ1=diff(x(t), t, t)+(-alpha+beta*x(t)^2)*(diff(x(t), t))+(omega[0]^2-mu*cos(2*Omega*t))*(x(t)+lambda*x(t)^3) = 0;
with :
alpha = 0.1e-1;
beta = 0.5e-1;
mu = 0.2;
lambda = 0.1;
omega[0] = 1;
a bifurcation diagram (Fig) plotted based on the direct numerical simulation of EQ1. The solution is computed starting from various basins of attraction, and the transient response is neglected by the rejection of 200 periods.
0 Commenti
Risposte (0)
Vedere anche
Categorie
Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!