How do I get DQN to output the policy I want
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I'm solving a problem with DQN. This environment currently has 10 optional moves, 8 states, and 20 rounds per run. I want to keep my problem variables to a minimum. The optima
0 Commenti
Risposte (1)
praguna manvi
il 17 Lug 2024
Hi,
Here is a sample code on how you could train a DQN agent with the above input, I am assuming a random “step function” and “reset function” for a simplified example:
% Define your environment
numStates = 8;
numActions = 10;
% Define the observation and action spaces
obsInfo = rlNumericSpec([numStates 1]);
actInfo = rlFiniteSetSpec(1:numActions);
% Create the custom environment
env = rlFunctionEnv(obsInfo, actInfo, @myStepFunction, @myResetFunction);
% Define the DQN agent
statePath = [
featureInputLayer(8, 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(24,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(24,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(numActions,'Name','fc3')];
criticNetwork = dlnetwork(statePath);
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'},criticOpts);
agentOpts = rlDQNAgentOptions(...
'SampleTime',1,...
'DiscountFactor',0.99,...
'ExperienceBufferLength',10000,...
'MiniBatchSize',256);
agent = rlDQNAgent(critic,agentOpts);
% Train the agent
trainOpts = rlTrainingOptions(...
'MaxEpisodes',20,...
'MaxStepsPerEpisode',numStates,...
'Verbose',false,...
'Plots','training-progress');
trainingStats = train(agent,env,trainOpts);
% Define the step function
function [nextObs, reward, isDone, loggedSignals] = myStepFunction(action, loggedSignals)
% step function logic here, calculating the next state
nextObs = randi([1, 8], [8, 1]);
reward = randi([-1, 1]);
isDone = false;
end
% Define the reset function
function [initialObs, loggedSignals] = myResetFunction()
% reset function logic here, I have used a random intial state
initialObs = randi([1, 8], [8, 1]);
loggedSignals = [];
end
For a detailed example please refer to this documentation on training a Custom PG Agent:
0 Commenti
Vedere anche
Categorie
Scopri di più su Training and Simulation in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!