Training a Convolutional Autoencoder
    13 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
I'm trying to train this simple convolutional autoencoder but I'm getting error on the training part. The error says the size of predictions and tragets are not the same. But When I check the network structure using the analyseNetwork function it seems that my input has the same size as my output. I can't find where is the error. Can someone help me? 
Follows the code
datastore_MP = datastore("Tiles_MP1_100ov50\", "IncludeSubfolders",true, "LabelSource","foldernames");
images_MP = cell(numel(datastore_MP.Files), 1);
for i = 1:numel(datastore_MP.Files)
    img_MP = readimage(datastore_MP, i);
    [rows, cols] = size(img_MP);
    images_MP{i} = img_MP;
end
encoderBlock = @(block) [
    convolution2dLayer(3,2^(3+block), "Padding",'same')
    reluLayer
    maxPooling2dLayer(2,"Stride",2)
    convolution2dLayer(3,2^(5+block), "Padding",'same')
    reluLayer
    maxPooling2dLayer(2,"Stride",2)];
net_E = blockedNetwork(encoderBlock,1,"NamePrefix","encoder_");
decoderBlock = @(block) [
    transposedConv2dLayer(3,2^(5-block),"Stride",2)
    reluLayer
    transposedConv2dLayer(3,2^(1-block), "Stride",2)
    reluLayer];
net_D = blockedNetwork(decoderBlock,1,"NamePrefix","decoder_");
inputSize = [100 100 1];
CAE = encoderDecoderNetwork(inputSize,net_E,net_D);
analyzeNetwork(CAE)
options = trainingOptions( "adam",...
    "Plots","training-progress",...
    "MaxEpochs", 100,...
   "L2Regularization",0.001);
trainedCAE = trainnet(datastore_MP, CAE, "mse", options);
0 Commenti
Risposte (2)
  newhere
 il 23 Mag 2024
        Hey, try changing 'trainnet' to 'trainNetwork'.
trainedCAE = trainNetwork(datastore_MP, CAE, "mse", options);
  ali kaffashbashi
 il 17 Ott 2024
        I guess it tries to set your label sources (the folder names) as targets during the training. Hence, the input and output sizes become different. I reckon using the following code instead of your training line will solve your problem:
trainedCAE = trainnet(combine(datastore_MP,datastore_MP), CAE, "mse", options);
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


