我从pytorch中​导入net到工作区,​在把net导入到si​mulink中的ma​tlab function中,​在运行过程中出现如下​问题Code generation for custom layer 'aten__linear0' for target 'mkldnn' is not supported as it returns a dlarra

2 visualizzazioni (ultimi 30 giorni)
classdef aten__linear0 < nnet.layer.Layer & nnet.layer.Formattable & ...
nnet.layer.AutogeneratedFromPyTorch & nnet.layer.Acceleratable
%aten__linear0 Auto-generated custom layer
% Auto-generated by MATLAB on 2024-05-24 16:18:35
%#codegen
properties (Learnable)
% Networks (type dlnetwork)
end
properties
% Non-Trainable Parameters
end
properties (Learnable)
% Trainable Parameters
Param_weight
Param_bias
end
methods
function obj = aten__linear0(Name, Type, InputNames, OutputNames)
obj.Name = Name;
obj.Type = Type;
obj.NumInputs = 1;
obj.NumOutputs = 1;
obj.InputNames = InputNames;
obj.OutputNames = OutputNames;
end
function [linear_9] = predict(obj,linear_x_1)
%Validates that the input has the correct format and permutes its dimensions into the reverse of the original PyTorch format.
model_tt.ops.validateInput(linear_x_1,2);
[linear_x_1, linear_x_1_format] = model_tt.ops.permuteInputToReversePyTorch(linear_x_1, 2);
[linear_x_1] = struct('value', linear_x_1, 'rank', int64(2));
[linear_9] = tracedPyTorchFunction(obj,linear_x_1,false,"predict");
%Permute U-labelled output to forward PyTorch dimension ordering
if(any(dims(linear_9.value) == 'U'))
linear_9 = permute(linear_9.value, fliplr(1:max(2,linear_9.rank)));
end
end
function [linear_9] = forward(obj,linear_x_1)
%Validates that the input has the correct format and permutes its dimensions into the reverse of the original PyTorch format.
model_tt.ops.validateInput(linear_x_1,2);
[linear_x_1, linear_x_1_format] = model_tt.ops.permuteInputToReversePyTorch(linear_x_1, 2);
[linear_x_1] = struct('value', linear_x_1, 'rank', int64(2));
[linear_9] = tracedPyTorchFunction(obj,linear_x_1,true,"forward");
%Permute U-labelled output to forward PyTorch dimension ordering
if(any(dims(linear_9.value) == 'U'))
linear_9 = permute(linear_9.value, fliplr(1:max(2,linear_9.rank)));
end
end
function [linear_9] = tracedPyTorchFunction(obj,linear_x_1,isForward,predict)
linear_weight_1 = obj.Param_weight;
[linear_weight_1] = struct('value', dlarray(linear_weight_1,'UU'), 'rank', 2);
linear_bias_1 = obj.Param_bias;
[linear_bias_1] = struct('value', dlarray(linear_bias_1,'UU'), 'rank', 1);
[linear_9] = model_tt.ops.pyLinear(linear_x_1, linear_weight_1, linear_bias_1);
end
end
end

Risposte (1)

Shivani
Shivani il 3 Giu 2024
The error message you're seeing indicates that the custom layer 'aten__linear0', which corresponds to a linear (fully connected) layer in PyTorch, is not supported for code generation for the target 'mkldnn'. MKLDNN is a backend optimized for deep learning operations on Intel CPUs, and it seems the issue is with generating code that can leverage this optimization for the specified layer.
From my understanding, a custom layer will not be supported for Code Generation by default. Please refer to the following documentation for more information on extending Code Generation support to custom layers:https://www.mathworks.com/help/coder/ug/networks-and-layers-supported-for-c-code-generation.html#:~:text=Yes-,Custom%20layers,-Custom%20layers%2C%20with
Additionally, if possible, replace the unsupported custom layer ('aten__linear0') with an equivalent operation or layer that is supported for code generation in MATLAB. The following documentation link lists out all the networks and layers supported for Code Generation: https://www.mathworks.com/help/coder/ug/networks-and-layers-supported-for-c-code-generation.html
Another possible workaround would be to generate generic C or C++ code that does not depend on third-party libraries, without targeting MKLDNN optimizations. You can refer to the following documentation link for more information on this: https://www.mathworks.com/help/coder/ug/generate-generic-cc-code-for-deep-learning-networks.html

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by