- objective — Objective function
- x0 — Starting point
- lb — Lower bound for x
- ub — Upper bound for x
- solver — 'simulannealbnd'
- options — Options created with optimoptions or an options structure
- rngstate — Optional field to reset the state of the random number generator
Why Does My Custom SA not Work for Mixed-integer Problem?
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have been trying to customize MATLAB's simulated annealing algorithm to my case, which is a mixed-integer optimization problem. Based on simulannealbnd documentation, I modified my code accordingly. However, it does not work as expected. That is, imagine we have N number of variables. I want to find a solution of which the first N / 2 number of variables are integer-valued and the rest of variables (N / 2 number of them) are float-valued. For demonstration I wrote this minimal reproducible example below:
rng(7, 'twister')
function y = objective(x)
y = abs(sum(x(1) .* (x(2:end - 3) .^ 2 + x(3:end - 2) - 11) .^ 2 - cos(x(2)) .* (x(4:end - 1) + x(5:end) .^ 2 - 7) .^ 2));
end
function newx = sahonorbounds(newx, optimValues, problem)
if ~problem.bounded
return
end
xin = newx;
newx = newx(:);
lb = problem.lb;
ub = problem.ub;
lbound = newx < lb;
ubound = newx > ub;
alpha = rand;
if any(lbound) || any(ubound)
projnewx = newx;
projnewx(lbound) = lb(lbound);
projnewx(ubound) = ub(ubound);
newx = alpha * projnewx + (1 - alpha) * optimValues.x(:);
newx = globaloptim.internal.validate.reshapeinput(xin, newx);
else
newx = xin;
end
% Round only integer variables
if isfield(problem, 'IntVars')
newx(problem.IntVars) = round(newx(problem.IntVars), 0);
end
end
function newx = mynewx(optimValues, problem)
currentx = optimValues.x;
nvar = numel(currentx);
newx = currentx;
newx(:) = currentx(:) + sqrt(optimValues.temperature) .* randn(nvar, 1);
newx = sahonorbounds(newx, optimValues, problem);
end
F = @(x) objective(x);
options = optimoptions('simulannealbnd', ...
'FunctionTolerance', 1e-9, ...
'AnnealingFcn', @mynewx, ...
'ReannealInterval', 10, ...
'InitialTemperature', 10);
N = 6; % NUMBER OF VARIABLES TO CHANGE
problem = struct('solver', 'simulannealbnd', ...
'objective', F, ...
'IntVars', 1:N / 2, ...
'x0', [round(100 .* rand(1, N / 2), 0), 100 .* rand(1, N / 2)], ...
'lb', zeros(1, N), ...
'ub', 100 .* ones(1, N), ...
'options', options);
[x, fval, exitflag, output] = simulannealbnd(problem);
fprintf('\nx* : ');
fprintf('%f ', x);
fprintf(' --- f(x*) : %f\n\n', fval);
When I set N equal to 4, it works, meaning the first two components of solution are integer and the other two are float. If I set it to 6, 8, etc., I get all-float solution. Can anyone explain what goes on here? How can I get what I wanted here, if I can?
0 Commenti
Risposta accettata
Torsten
il 10 Lug 2024
Spostato: Torsten
il 10 Lug 2024
This is the problem structure of "simulannealbnd". I cannot find "IntVars".
problem — Problem structure
structure
Problem structure, specified as a structure with the following fields:
Maybe you can tell us where you found that some variables can be defined as integers in the framework of "simulannealbnd".
3 Commenti
Torsten
il 11 Lug 2024
Modificato: Torsten
il 11 Lug 2024
So you have programmed a new version of "simulannealbnd" that can handle the option "IntVars" ? For this to be true, you would have had to rewrite the complete algorithm.
Why don't you use "ga" ? It has the software option to define variables as integers.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Simulated Annealing in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!