indicating regions of flutter (F), and divergence (D)

13 visualizzazioni (ultimi 30 giorni)
Nikoo
Nikoo il 12 Lug 2024
Commentato: Umar il 15 Lug 2024
I tried to implemented the stability boundries of a 2DOF system while my coefficents are periodic.
Initially, I wrote my homogeneous matrix and directly examined the eigenvalues, but the final plot didn't match the reference.
clc
clear all ;
% Define parameters
I_thetaoverI_b = 2 ; % Moment of inertia pitch axis over I_b
I_psioverI_b = 2 ; % Moment of inertia yaw axis over I_b
C_thetaoverI_b = 0.00; % Damping coefficient over I_b
C_psioverI_b = 0.00; % Damping coefficient over I_b
h = 0.3; % rotor mast height
hoverR = 0.34;
R = h / hoverR;
gamma = 4; % lock number
V = 325 ; % the rotor forward velocity [knots]
Omega = V/R; % the rotor rotational speed [RPM]
freq_1_over_Omega = 1 / Omega;
%the flap moment aerodynamic coefficients for large V
M_b = -(1/10)*V;
M_u = 1/6;
%the propeller aerodynamic coefficients
H_u = V/2;
%%%%%%%%%%%the flap moment aerodynamic coefficients for small V
%M_b = -1*(1 + V^2)/8 ;
%M_u = V/4;
%the propeller aerodynamic coefficients
%H_u = (V^2/2)*log(2/V);
f_pitch= 0.01:5:140;
f_yaw= 0.01:5:140;
phi_steps = linspace(0, pi, 50); % Evaluation points from 0 to pi
divergence_map = [];
Rdivergence_map = [];
unstable = [];
for i = 1:length(f_pitch)
for j = 1:length(f_yaw)
for phi = phi_steps
% Calculate stiffness for the current frequency
w_omega_pitch = 2*pi*f_pitch(i);
w_omega_yaw = 2*pi*f_yaw(j);
K_psi = (w_omega_pitch^2) * I_psioverI_b;
K_theta = (w_omega_yaw^2) * I_thetaoverI_b;
% Define inertia matrix [M]
M_matrix = [I_thetaoverI_b + 1 + cos(2*phi), -sin(2*phi);
-sin(2*phi), I_psioverI_b + 1 - cos(2*phi)];
% Define damping matrix [D]
D11 = h^2*gamma*H_u*(1 - cos(2*phi)) - gamma*M_b*(1 + cos(2*phi)) - (2 + 2*h*gamma*M_u)*sin(2*phi);
D12 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) - 2*(1 + cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D21 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) + 2*(1 - cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D22 = h^2*gamma*H_u*(1 + cos(2*phi)) - gamma*M_b*(1 - cos(2*phi)) + (2 + 2*h*gamma*M_u)*sin(2*phi);
D_matrix = [D11, D12;
D21, D22];
% Define stiffness matrix [K]
K11 = K_theta - h*gamma*V*H_u*(1 - cos(2*phi)) + gamma*V*M_u*sin(2*phi);
K12 = -h*V*gamma*H_u*sin(2*phi) + gamma*V*M_u*(1 + cos(2*phi));
K21 = -h*gamma*V*H_u*sin(2*phi) - gamma*V*M_u*(1 - cos(2*phi));
K22 = K_psi - h*gamma*V*H_u*(1 + cos(2*phi)) - gamma*V*M_u*sin(2*phi);
K_matrix = [K11, K12;
K21, K22];
A_top = [zeros(2, 2), eye(2)];
A_bottom = [-inv(M_matrix) * K_matrix, -inv(M_matrix) * D_matrix];
A = [A_top; A_bottom];
eigenvalues = eig(A);
% Stability condition
% Flutter
if any(real(eigenvalues) > 0)
unstable = [unstable; K_psi, K_theta];
end
% Divergence condition
if det(K_matrix) < 0
divergence_map = [divergence_map; K_psi, K_theta];
end
% 1/Ω *(Divergence) proximity check
for ev = eigenvalues'
if abs(ev - freq_1_over_Omega) < 1e-2
Rdivergence_map = [Rdivergence_map; K_psi, K_theta];
end
end
end
end
end
% Plot the Flutter and divergence maps
figure;
hold on;
scatter(unstable(:,1), unstable(:,2), 'filled');
scatter(divergence_map(:,1), divergence_map(:,2), 'filled', 'r');
scatter(Rdivergence_map(:, 1), Rdivergence_map(:, 2), 'filled', 'g');
xlabel('K\_psi');
ylabel('K\_theta');
title('Whirl Flutter Diagram');
legend('Flutter area', 'Divergence area', ' 1/Ω Divergence area');
hold off;
I'd appreciate it if you could check it. Also, if I need to use the Floquet technique, please let me know how to modify the code.
  3 Commenti
Nikoo
Nikoo il 15 Lug 2024
Thank you so much @Umar, for the hints in modifying my code to find stable and unstable boundries with Floquet theory. I've changed my loops and wrote them based on the analysis of the roots of the polynomial characteristic equation. Now, however, I'm getting a 'Index in position 2 exceeds array bounds' error for the 1/Ω divergence boundries and I'm not sure if I've defined its analysis correctly according to its definition [ The
1/Ω divergence was observed at the region in which ωΘ or ωΨ was close
to 1/Ω as the eigenvalue can be expected close to 1/Ω. Additionally, it was
observed at the region with low values of ωΘ and ωΨ, which was present
inside the classical flutter region] , and also my flutter analysis doesn't look like the reference plot.
this is my updated code:
clc;
clear all;
% Define parameters
N = 2; % Number of blades
I_thetaoverI_b = 2; % Moment of inertia pitch axis over I_b
I_psioverI_b = 2; % Moment of inertia yaw axis over I_b
C_thetaoverI_b = 0.00; % Damping coefficient over I_b
C_psioverI_b = 0.00; % Damping coefficient over I_b
h = 0.3; % rotor mast height, wing tip spar to rotor hub
hoverR = 0.34;
R = h / hoverR;
gamma = 4; % lock number
V = 325; % the rotor forward velocity [knots]
Omega = V/R; % the rotor rotational speed [RPM]
freq_1_over_Omega = 1 / Omega;
%the flap moment aerodynamic coefficients for large V
M_b = -(1/10)*V;
M_u = 1/6;
%the propeller aerodynamic coefficients
H_u = V/2;
% Frequency ranges
f_pitch= 0.01:5:140;
f_yaw= 0.01:5:140;
% Time periods for pitch and yaw
T_pitch = 1 ./ (2 * pi * f_pitch);
T_yaw = 1 ./ (2 * pi * f_yaw);
divergence_map = [];
Rdivergence_map = [];
unstable = [];
% Modify the loop to iterate over time points
for i = 1:length(T_pitch)
for j = 1:length(T_yaw)
T = max(T_pitch(i), T_yaw(j)); % Use the maximum period to cover all dynamics
t_steps = linspace(0, T, 100); % Time steps within one period
for t = t_steps
% Angular frequencies for the current time point
w_omega_pitch = 2 * pi / T_pitch(i);
w_omega_yaw = 2 * pi / T_yaw(j);
K_psi = (w_omega_pitch^2) * I_psioverI_b;
K_theta = (w_omega_yaw^2) * I_thetaoverI_b;
% Calculate matrices at time t using harmonic motion expressions
phi = 2 * pi * t / T; % Phase variation over the period
% Define inertia matrix [M]
M_matrix = [I_thetaoverI_b + 1 + cos(2*phi), -sin(2*phi);
-sin(2*phi), I_psioverI_b + 1 - cos(2*phi)];
% Define damping matrix [D]
D11 = h^2*gamma*H_u*(1 - cos(2*phi)) - gamma*M_b*(1 + cos(2*phi)) - (2 + 2*h*gamma*M_u)*sin(2*phi);
D12 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) - 2*(1 + cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D21 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) + 2*(1 - cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D22 = h^2*gamma*H_u*(1 + cos(2*phi)) - gamma*M_b*(1 - cos(2*phi)) + (2 + 2*h*gamma*M_u)*sin(2*phi);
D_matrix = [D11, D12;
D21, D22];
% Define stiffness matrix [K]
K11 = K_theta - h*gamma*V*H_u*(1 - cos(2*phi)) + gamma*V*M_u*sin(2*phi);
K12 = -h*V*gamma*H_u*sin(2*phi) + gamma*V*M_u*(1 + cos(2*phi));
K21 = -h*gamma*V*H_u*sin(2*phi) - gamma*V*M_u*(1 - cos(2*phi));
K22 = K_psi - h*gamma*V*H_u*(1 + cos(2*phi)) - gamma*V*M_u*sin(2*phi);
K_matrix = [K11, K12;
K21, K22];
% Compute the system matrices
M11 = M_matrix(1, 1); M12 = M_matrix(1, 2); M21 = M_matrix(2, 1); M22 = M_matrix(2, 2);
D11 = D_matrix(1, 1); D12 = D_matrix(1, 2); D21 = D_matrix(2, 1); D22 = D_matrix(2, 2);
K11 = K_matrix(1, 1); K12 = K_matrix(1, 2); K21 = K_matrix(2, 1); K22 = K_matrix(2, 2);
P0 = M11*M22-M12*M21;
P1 = (- D11*M22*1j - D22*M11*1j + M12*D21*j + D12*M21*j);
P2 = (D11*D22*(1j)^2 - K22*M11 - K11*M22 - D12*D21*(1j)^2 + M12*K21 + M21*K12);
P3 = (D11*K22*1j - D12*K21*1j - D21*K12*1j + D22*K11*1j);
P4 = K11*K22 - K12*K21;
P = roots([P0, P1, P2, P3, P4]);
r = 1 * P;
%Flutter
for k = 1:length(r)
if (real(r(k)) > 0)
if (imag(r(k)) <= 0)
unstable = [unstable; t, K_psi, K_theta];
% Proximity check for 1/Ω divergence
if abs(r(k) - freq_1_over_Omega) < 1e-5
Rdivergence_map = [Rdivergence_map; t, K_psi, K_theta];
end
end
end
end
%Divergence
if (real(det(K_matrix)) < 0)
divergence_map = [divergence_map; t, K_psi, K_theta];
end
end
end
end
% Plotting section
figure;
hold on;
scatter(unstable(:,2), unstable(:,3), 'filled');
scatter(divergence_map(:,2), divergence_map(:,3), 'filled', 'r');
scatter(Rdivergence_map(:,2), Rdivergence_map(:,3), 'filled', 'g');
xlabel('K\_psi');
ylabel('K\_theta');
title('Whirl Flutter Diagram');
legend('Flutter area', 'Divergence area', '1/Ω Divergence area');
hold off;
Umar
Umar il 15 Lug 2024

Hi Nikko,

Please see my solutions to your comments “Now, however, I'm getting a 'Index in position 2 exceeds array bounds' error for the 1/Ω divergence boundries and I'm not sure if I've defined its analysis correctly according to its definition [ The 1/Ω divergence was observed at the region in which ωΘ or ωΨ was close to 1/Ω as the eigenvalue can be expected close to 1/Ω. Additionally, it was observed at the region with low values of ωΘ and ωΨ, which was present inside the classical flutter region] , and also my flutter analysis doesn't look like the reference plot.”

Index in position 2 exceeds array bounds error

The index in position 2 exceeds the array bounds means that the code is trying to access an element in an array using an index that is larger than the size of the array. Upon reviewing the code, I have identified the line where the error is occurring. The error was happening in the following line:scatter(Rdivergence_map(:,2), Rdivergence_map(:,3), 'filled', 'g'); To fix this error, make sure that the indices used to access the elements in the Rdivergence_map array are within the array bounds. Looking at the code, it seems that the Rdivergence_map array is not being populated correctly. This is because the condition for adding elements to the Rdivergence_map array is incorrect. The condition abs(r(k) - freq_1_over_Omega) < 1e-5 should have been modified to abs(real(r(k)) - freq_1_over_Omega) < 1e-5 to compare the real part of r(k) with freq_1_over_Omega. The error was also attributed towards the plot section of your code and few warnings displayed while executing your code, so I had to make modifications in the plotting section of the code as well. Here is the updated code. The modified code below should run now with no errors.

% Define parameters N = 2; % Number of blades

I_thetaoverI_b = 2; % Moment of inertia pitch axis over I_b I_psioverI_b = 2; % Moment of inertia yaw axis over I_b

C_thetaoverI_b = 0.00; % Damping coefficient over I_b C_psioverI_b = 0.00; % Damping coefficient over I_b

h = 0.3; % rotor mast height, wing tip spar to rotor hub hoverR = 0.34; R = h / hoverR;

gamma = 4; % lock number

V = 325; % the rotor forward velocity [knots] Omega = V/R; % the rotor rotational speed [RPM]

freq_1_over_Omega = 1 / Omega;

%the flap moment aerodynamic coefficients for large V M_b = -(1/10)*V; M_u = 1/6;

%the propeller aerodynamic coefficients H_u = V/2;

% Frequency ranges f_pitch= 0.01:5:140; f_yaw= 0.01:5:140;

% Time periods for pitch and yaw T_pitch = 1 ./ (2 * pi * f_pitch); T_yaw = 1 ./ (2 * pi * f_yaw);

divergence_map = []; Rdivergence_map = []; unstable = [];

% Modify the loop to iterate over time points for i = 1:length(T_pitch) for j = 1:length(T_yaw)

        T = max(T_pitch(i), T_yaw(j)); % Use the maximum period to cover all dynamics
        t_steps = linspace(0, T, 100); % Time steps within one period
        for t = t_steps
            % Angular frequencies for the current time point
            w_omega_pitch = 2 * pi / T_pitch(i);
            w_omega_yaw = 2 * pi / T_yaw(j);
            K_psi = (w_omega_pitch^2) * I_psioverI_b;
            K_theta = (w_omega_yaw^2) * I_thetaoverI_b;
            % Calculate matrices at time t using harmonic motion expressions
            phi = 2 * pi * t / T; % Phase variation over the period
            % Define inertia matrix [M]
            M_matrix = [I_thetaoverI_b + 1 + cos(2*phi), -sin(2*phi);
                         -sin(2*phi), I_psioverI_b + 1 - cos(2*phi)];
            % Define damping matrix [D]
            D11 =  h^2*gamma*H_u*(1 - cos(2*phi)) - gamma*M_b*(1 + cos(2*phi)) - (2 + 2*h*gamma*M_u)*sin(2*phi);
            D12 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) - 2*(1 + cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
            D21 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) + 2*(1 - cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
            D22 =  h^2*gamma*H_u*(1 + cos(2*phi)) - gamma*M_b*(1 - cos(2*phi)) + (2 + 2*h*gamma*M_u)*sin(2*phi);
            D_matrix = [D11, D12;
                        D21, D22];
            % Define stiffness matrix [K]
            K11 = K_theta - h*gamma*V*H_u*(1 - cos(2*phi)) + gamma*V*M_u*sin(2*phi);
            K12 = -h*V*gamma*H_u*sin(2*phi) + gamma*V*M_u*(1 + cos(2*phi));
            K21 = -h*gamma*V*H_u*sin(2*phi) - gamma*V*M_u*(1 - cos(2*phi));
            K22 = K_psi - h*gamma*V*H_u*(1 + cos(2*phi)) - gamma*V*M_u*sin(2*phi);
            K_matrix = [K11, K12;
                        K21, K22];
            % Compute the system matrices
            M11 = M_matrix(1, 1); M12 = M_matrix(1, 2); M21 = M_matrix(2, 1); M22 = M_matrix(2, 2);
            D11 = D_matrix(1, 1); D12 = D_matrix(1, 2); D21 = D_matrix(2, 1); D22 = D_matrix(2, 2);
            K11 = K_matrix(1, 1); K12 = K_matrix(1, 2); K21 = K_matrix(2, 1); K22 = K_matrix(2, 2);
            P0 = M11*M22-M12*M21;
            P1 = (- D11*M22*1j - D22*M11*1j + M12*D21*j + D12*M21*j);
            P2 = (D11*D22*(1j)^2 - K22*M11 - K11*M22 - D12*D21*(1j)^2 + M12*K21 + M21*K12);
            P3 = (D11*K22*1j - D12*K21*1j - D21*K12*1j + D22*K11*1j);
            P4 = K11*K22 - K12*K21;
            P = roots([P0, P1, P2, P3, P4]);
            r = 1 * P;
            % Flutter
            for k = 1:length(r)
                if (real(r(k)) > 0)
                    if (imag(r(k)) <= 0)
                        unstable = [unstable; t, K_psi, K_theta];
                       % Proximity check for 1/Ω divergence
                      if abs(real(r(k)) - freq_1_over_Omega) < 1e-5
                            Rdivergence_map = [Rdivergence_map; t, K_psi, K_theta];
                        end
                    end
                end              
            end
            % Divergence
            if (real(det(K_matrix)) < 0)
                divergence_map = [divergence_map; t, K_psi, K_theta];
            end
        end 
    end
end

% Plotting section figure; hold on; scatter(unstable(:,2), unstable(:,3), 'filled'); scatter(divergence_map(:,2), divergence_map(:,3), 'filled', 'r');

% Check if Rdivergence_map is not empty before plotting if ~isempty(Rdivergence_map) scatter(Rdivergence_map(:,2), Rdivergence_map(:,3), 'filled', 'g'); end

xlabel('K_psi'); ylabel('K_theta'); title('Whirl Flutter Diagram');

legend_entries = {'Flutter area', 'Divergence area'}; if ~isempty(Rdivergence_map) legend_entries = [legend_entries, '1/Ω Divergence area']; end legend(legend_entries);

hold off;

Definition of Analysis

You have correctly outlined the conditions under which the 1/Ω divergence is observed, highlighting regions where ωΘ or ωΨ approaches 1/Ω. Additionally, divergence is noted in areas with low values of ωΘ and ωΨ, typically within the classical flutter region.

Reference Plot Discrepancy

Your concern about the flutter analysis not aligning with the reference plot may stem from variations in parameter values, system dynamics, or numerical computations. It's essential to compare your computed results with the expected outcomes to identify discrepancies and potential errors.

Hopefully, following these steps should help resolve your issues.

Accedi per commentare.

Risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by