Solving with ode45 with a solution dependant variable in the ode
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
Let's say I want to solve :
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1748334/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1748339/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1748344/image.png)
I can theoretically solve each ode with RK4 at step z+dz and then calculate N(z+dz). But how do I do it using the already implemented RK4 function implemented in Matlab? Would something like this work or is there a way better solution?
while(z<zLim)%%This is just an idea of the algorithm I would use
zspan=[0 dz];%Solving the ODE for a very small zspan
if(z~=0)
y0=y(length(y));
else
y0=0;
end
[z,y] = ode45(@(z,y) N*y, zspan, y0);
%Calculate c(z),g(z),....
%Calculate N at step dz
z=z+dz;
end
Thanks
0 Commenti
Risposta accettata
Più risposte (1)
Aquatris
il 7 Ago 2024
Modificato: Aquatris
il 7 Ago 2024
No, you should not do it that way. Instead you should create your function properly in a way that represents the equations. It will be easier to manipulate things later on.
[z,y] = ode45(@myfun, zspan, y0);
function dx = myfun(z,y)
% x = [y(z) N(z) g(z) c(z)]'
persistent z_prev
if isempty(z_prev)
z_prev = 0; % assuming zspan starts at 0
end
dz = z-z_prev;
dx = [x(1)*x(2); % dy = y(z)*N(z)
(x(1)+x(3)+x(4)-x(2))/dt; % dN = (y(z)+c(z)+g(z)-N)/dz so that N(z+dz) = N(z)+(y(z)+c(z)+g(z)-N(z))/dz*dz = y(z)+c(z)+g(z)
...% dc -> formulate similar to dN
...% dg -> formulate similar to dN]
end
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!