ONNX export of RNN / LSTM network
41 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have a standard LSTM neural network created with the deep learning toolbox.
I export it with the ONNX format with the matlab exportONNXNetwork function.
I then import it via python with onnxruntime: import onnxruntime as ort // session = ort.InferenceSession(onnx_model_path)
Then, when I check session.get_inputs()[0], I see only the data input as unique input. It seems that the states can not be specified. Do you know how to handle the state of the recurrent neural network (especially in closed-loop mode) when using the onnxruntime session.run function?
0 Commenti
Risposte (1)
aditi bagora
circa 8 ore fa
Since, you have exported the model in ONXX format with the matlab 'exportONNXNetwork' . You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states. To handle these states, update them with the outputs generated from session.run() at each step, feeding them back into the model for subsequent inferences.
0 Commenti
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!