Solving a set of complex trig equation
45 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Irtiza Masrur Khan
il 25 Nov 2024 alle 20:15
Modificato: Walter Roberson
il 27 Nov 2024 alle 20:09
Hello,
I have a very complex set of trig equations:
eqns1 = (-rake + (R_values(i)*(d/2))*deg2rad(skew)*tan(p) + (0.5 * chord_len(i) - x_c(1)) * sin(p) + y_u_L(1) * cos(p)) == xp(i*200);
eqns2 = R_values(i)*(d/2) * sind(skew -(180 * ((0.5 * chord_len(i) - x_c(1)) * cos(p) - y_u_L(1) * sin(p))) /(pi * R_values(i)*(d/2))) == yp(i*200);
eqns3 = R_values(i)*(d/2) * cosd(skew -(180 * ((0.5 * chord_len(i) - x_c(1)) * cos(p) - y_u_L(1) * sin(p))) /(pi * R_values(i)*(d/2))) == zp(i*200);
Attaching a picture of the equations for convineince of viewing.
Here I have named iG => rake, θs => skew, and θnt => p in my MATLAB script, The unknowns are: rake, p, and skew. All the other values are known.
I have tried using solve, vpasolve, and fsolve. solve and vpasolve generates an emptry structure for S.
Code of the loop that solves the equations:
for i = 1:9
% Calculate airfoil properties
chord_len = chord_length_at_R * d;
max_c = max_camber_at_R .* chord_len;
max_th = max_thickness_at_R * d;
cam = -cam_d * max_c(i);
th = th_d * max_th(i);
x_c = X_c * chord_len(i);
theta1 = atan2(der_y, 1);
y_u_L = cam + th .* cos(theta1);
% Define equations
eqns1 = (-rake + (R_values(i)*(d/2))*deg2rad(skew)*tan(p) + ...
(0.5 * chord_len(i) - x_c(1)) * sin(p) + y_u_L(1) * cos(p)) == xp(i*200);
eqns2 = R_values(i)*(d/2) * sind(skew - ...
(180 * ((0.5 * chord_len(i) - x_c(1)) * cos(p) - y_u_L(1) * sin(p))) / ...
(pi * R_values(i)*(d/2))) == yp(i*200);
eqns3 = R_values(i)*(d/2) * cosd(skew - ...
(180 * ((0.5 * chord_len(i) - x_c(1)) * cos(p) - y_u_L(1) * sin(p))) / ...
(pi * R_values(i)*(d/2))) == zp(i*200);
% Solve equations
try
S = vpasolve(simplify([eqns1, eqns2, eqns3]), [p, skew, rake], [pitch(i),0, skew_angle_at_R(i)]); % With initial guess
if isempty(S)
disp(['No solution for section ', num2str(i)]);
else
rake_sol = double(S.rake);
p_sol = double(S.p);
skew_sol = double(S.skew);
fprintf('Section %d: Rake = %.4f, P = %.4f, Skew = %.4f\n', i, rake_sol, p_sol, skew_sol);
end
catch ME
disp(['Error solving section ', num2str(i)]);
disp(ME.message);
end
end
And with fsolve I can only converge the first two sections.
Code of the loop that solves the equations:
for i = 1:n
% Scale airfoil data for current section
chord_len = chord_length_at_R * d;
max_c = max_camber_at_R .* chord_len;
max_th = max_thickness_at_R * d;
cam = cam_d * max_c(i);
th = th_d * max_th(i);
x_c = X_c * chord_len(i);
theta1 = atan2(der_y, 1);
y_u_L = cam + th .* cos(theta1);
% Define equations for fsolve
fun = @(vars) [
(-vars(2) + (R_values(i) * (d / 2)) * vars(3) * tan(vars(1)) + (0.5 * chord_len(i) - x_c(1)) * sin(vars(1)) + y_u_L(1) * cos(vars(1))) - xp(i * 200);
R_values(i) * (d / 2) * sind(vars(3) - (180 * ((0.5 * chord_len(i) - x_c(1)) * cos(vars(1)) - y_u_L(1) * sin(vars(1)))) / (pi * R_values(i) * (d / 2))) - yp(i * 200);
R_values(i) * (d / 2) * cosd(vars(3) - (180 * ((0.5 * chord_len(i) - x_c(1)) * cos(vars(1)) - y_u_L(1) * sin(vars(1)))) / (pi * R_values(i) * (d / 2))) - zp(i * 200)
];
% Use pitch, skew_angle_at_R, and rake as initial guesses
initial_guess = [pitch(i),0, skew_angle_at_R(i)];
% Solve using fsolve
options = optimoptions('fsolve', 'Display', 'none', 'MaxIterations', 10000, 'MaxFunctionEvaluations', 20000);
[solution, fval, exitflag] = fsolve(fun, initial_guess, options);
% Handle non-convergence
if exitflag <= 0
fprintf('fsolve did not converge for section %d. Trying alternative guesses...\n', i);
alt_guesses = [rand(1, 3); [pitch(i),0, skew_angle_at_R(i)]]; % Use random or skew-related guesses
for j = 1:size(alt_guesses, 1)
[solution, fval, exitflag] = fsolve(fun, alt_guesses(j, :), options);
if exitflag > 0
break;
end
end
end
% Store solutions
if exitflag > 0
solutions(i, :) = solution;
else
fprintf('Failed to converge for section %d even with alternative guesses.\n', i);
end
end
I would really appreacite any help on this as I've been stuck on this for some time. I know that these equations are highly non-linaer which is why MATLAB is probably having a hard time solving this, but I am not sure how else to approach this problem.
2 Commenti
Irtiza Masrur Khan
il 25 Nov 2024 alle 20:35
Modificato: Torsten
il 25 Nov 2024 alle 21:41
Risposta accettata
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Airfoil tools in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!