How to optimize an reduce the computation time
64 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
while Fg >= 0.001
if Fg > 0.15
Psat = Psat + 1;
elseif Fg > 0.02
Psat = Psat + 0.1;
elseif Fg > 0.009
Psat = Psat + 0.01;
else
Psat = Psat + 0.001;
end
Pri = Psat./PcMPa;
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
syms fg
fun = sum(x.*(k-1)./(1+fg*(k-1)));
Fgmass = double(solve(fun==0,fg));
Fg = Fgmass(Fgmass<0.99 & Fgmass>0);
end
Hello. I am a complete beginner. How can i reduce computation time for this process? Now it takes around a minute. I need to do 2-20 thousand of such computations. Thank you in advance.
4 Commenti
Walter Roberson
il 28 Nov 2024 alle 20:28
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
In that calculation, w and Tri are calculated before the while loop. The entire expression exp(5.37.*(1+w).*(1-Tri.^(-1))) is effectively constant . So pre-calculate it,
wexp = exp(5.37.*(1+w).*(1-Tri.^(-1)));
before the loop, and then inside the loop
k = wexp ./ Pri;
Walter Roberson
il 28 Nov 2024 alle 20:32
syms fg
fun = sum(x.*(k-1)./(1+fg*(k-1)));
Fgmass = double(solve(fun==0,fg));
Fg = Fgmass(Fgmass<0.99 & Fgmass>0);
Are you expecting multiple solutions for the solve() ? If not then it would be better to use vpasolve() instead of solve()
Risposte (1)
Torsten
il 28 Nov 2024 alle 11:16
Modificato: Torsten
il 28 Nov 2024 alle 14:07
I don't understand the sense of your while-loop.
If you want to define Psat as a function of fg, the problem becomes more complicated.
Try to use "fzero" or "fsolve" instead of symbolic computations like done below if you want to make the code perform faster.
x = [0.0035, 0.0314, 0.5426, 0.0857, 0.0572, 0.0076, 0.0245, 0.0075, 0.012, 0.0153, 0.026, 0.0302, 0.021, 0.0174, 0.0136, 0.011, 0.0111, 0.0095, 0.0086, 0.0068, 0.006, 0.0056, 0.0051, 0.0408];
PcMPa = [3.399, 7.382, 4.604, 4.880, 4.249, 3.648, 3.797, 3.381, 3.369, 3.012, 2.736, 2.486, 2.289, 2.096, 1.979, 1.824, 1.7, 1.524, 1.486, 1.4, 1.325, 1.294, 1.173, 1.08];
TcK= [126.3, 304.2, 190.6, 305.4, 369.8, 408.2, 425.2, 460.4, 469.7, 507.4, 540.3, 568.8, 594.6, 617.7,639, 658, 675, 693, 708, 723, 734, 748, 755, 768];
w =[0.045, 0.231, 0.0115, 0.0908, 0.1454, 0.1756, 0.1928, 0.2273, 0.251, 0.2957, 0.3506, 0.3978, 0.4437, 0.4902, 0.535, 0.575, 0.619, 0.659, 0.706, 0.742, 0.77, 0.79, 0.827, 0.907];
TK = 200;
R = 8.314;
PPsat = 0.01:0.01:3.38;
Tri = TK./TcK;
fg0 = 0.7;
for i = 1:numel(PPsat)
Psat = PPsat(i);
Pri = Psat./PcMPa;
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
%syms fg
%sol = vpa(solve(fun==0,fg));
%sol = sol(abs(imag(sol))<1e-6);
%sol = sol(sol>0 & sol<1);
%Fg(i) = double(sol);
fun = @(fg)sum(x.*(k-1)./(1+fg*(k-1)));
Fg(i) = fsolve(fun,fg0,optimset('Display','none'));
fg0 = Fg(i);
end
plot(PPsat,Fg)
xlabel('Psat')
ylabel('fg')
3 Commenti
Stephen23
il 28 Nov 2024 alle 17:01
Do not reinvent the wheel.
As Torsten wrote, just use FZERO or FSOLVE or similar.
Avoid symbolic mathematics (if computation time is important).
Torsten
il 28 Nov 2024 alle 19:10
Modificato: Torsten
il 28 Nov 2024 alle 19:20
My while loop is trying to find value of Psat at which fg as close to zero as possible
Then insert fg = 0 (or something close to 0) and solve for Psat:
x = [0.0035, 0.0314, 0.5426, 0.0857, 0.0572, 0.0076, 0.0245, 0.0075, 0.012, 0.0153, 0.026, 0.0302, 0.021, 0.0174, 0.0136, 0.011, 0.0111, 0.0095, 0.0086, 0.0068, 0.006, 0.0056, 0.0051, 0.0408];
PcMPa = [3.399, 7.382, 4.604, 4.880, 4.249, 3.648, 3.797, 3.381, 3.369, 3.012, 2.736, 2.486, 2.289, 2.096, 1.979, 1.824, 1.7, 1.524, 1.486, 1.4, 1.325, 1.294, 1.173, 1.08];
TcK= [126.3, 304.2, 190.6, 305.4, 369.8, 408.2, 425.2, 460.4, 469.7, 507.4, 540.3, 568.8, 594.6, 617.7,639, 658, 675, 693, 708, 723, 734, 748, 755, 768];
w =[0.045, 0.231, 0.0115, 0.0908, 0.1454, 0.1756, 0.1928, 0.2273, 0.251, 0.2957, 0.3506, 0.3978, 0.4437, 0.4902, 0.535, 0.575, 0.619, 0.659, 0.706, 0.742, 0.77, 0.79, 0.827, 0.907];
TK = 200;
R = 8.314;
Tri = TK./TcK;
Pri = @(Psat)Psat./PcMPa;
k = @(Psat)exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri(Psat);
fg = 0;
fun = @(Psat)sum(x.*(k(Psat)-1)./(1+fg*(k(Psat)-1)));
Psat = fsolve(fun,5)
Vedere anche
Categorie
Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!