How to optimize an reduce the computation time

64 visualizzazioni (ultimi 30 giorni)
Ruslan
Ruslan il 28 Nov 2024 alle 6:36
Commentato: Walter Roberson il 28 Nov 2024 alle 20:32
while Fg >= 0.001
if Fg > 0.15
Psat = Psat + 1;
elseif Fg > 0.02
Psat = Psat + 0.1;
elseif Fg > 0.009
Psat = Psat + 0.01;
else
Psat = Psat + 0.001;
end
Pri = Psat./PcMPa;
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
syms fg
fun = sum(x.*(k-1)./(1+fg*(k-1)));
Fgmass = double(solve(fun==0,fg));
Fg = Fgmass(Fgmass<0.99 & Fgmass>0);
end
Hello. I am a complete beginner. How can i reduce computation time for this process? Now it takes around a minute. I need to do 2-20 thousand of such computations. Thank you in advance.
  4 Commenti
Walter Roberson
Walter Roberson il 28 Nov 2024 alle 20:28
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
In that calculation, w and Tri are calculated before the while loop. The entire expression exp(5.37.*(1+w).*(1-Tri.^(-1))) is effectively constant . So pre-calculate it,
wexp = exp(5.37.*(1+w).*(1-Tri.^(-1)));
before the loop, and then inside the loop
k = wexp ./ Pri;
Walter Roberson
Walter Roberson il 28 Nov 2024 alle 20:32
syms fg
fun = sum(x.*(k-1)./(1+fg*(k-1)));
Fgmass = double(solve(fun==0,fg));
Fg = Fgmass(Fgmass<0.99 & Fgmass>0);
Are you expecting multiple solutions for the solve() ? If not then it would be better to use vpasolve() instead of solve()

Accedi per commentare.

Risposte (1)

Torsten
Torsten il 28 Nov 2024 alle 11:16
Modificato: Torsten il 28 Nov 2024 alle 14:07
I don't understand the sense of your while-loop.
If you want to define Psat as a function of fg, the problem becomes more complicated.
Try to use "fzero" or "fsolve" instead of symbolic computations like done below if you want to make the code perform faster.
x = [0.0035, 0.0314, 0.5426, 0.0857, 0.0572, 0.0076, 0.0245, 0.0075, 0.012, 0.0153, 0.026, 0.0302, 0.021, 0.0174, 0.0136, 0.011, 0.0111, 0.0095, 0.0086, 0.0068, 0.006, 0.0056, 0.0051, 0.0408];
PcMPa = [3.399, 7.382, 4.604, 4.880, 4.249, 3.648, 3.797, 3.381, 3.369, 3.012, 2.736, 2.486, 2.289, 2.096, 1.979, 1.824, 1.7, 1.524, 1.486, 1.4, 1.325, 1.294, 1.173, 1.08];
TcK= [126.3, 304.2, 190.6, 305.4, 369.8, 408.2, 425.2, 460.4, 469.7, 507.4, 540.3, 568.8, 594.6, 617.7,639, 658, 675, 693, 708, 723, 734, 748, 755, 768];
w =[0.045, 0.231, 0.0115, 0.0908, 0.1454, 0.1756, 0.1928, 0.2273, 0.251, 0.2957, 0.3506, 0.3978, 0.4437, 0.4902, 0.535, 0.575, 0.619, 0.659, 0.706, 0.742, 0.77, 0.79, 0.827, 0.907];
TK = 200;
R = 8.314;
PPsat = 0.01:0.01:3.38;
Tri = TK./TcK;
fg0 = 0.7;
for i = 1:numel(PPsat)
Psat = PPsat(i);
Pri = Psat./PcMPa;
k = exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri;
%syms fg
%sol = vpa(solve(fun==0,fg));
%sol = sol(abs(imag(sol))<1e-6);
%sol = sol(sol>0 & sol<1);
%Fg(i) = double(sol);
fun = @(fg)sum(x.*(k-1)./(1+fg*(k-1)));
Fg(i) = fsolve(fun,fg0,optimset('Display','none'));
fg0 = Fg(i);
end
plot(PPsat,Fg)
xlabel('Psat')
ylabel('fg')
  3 Commenti
Stephen23
Stephen23 il 28 Nov 2024 alle 17:01
Do not reinvent the wheel.
As Torsten wrote, just use FZERO or FSOLVE or similar.
Avoid symbolic mathematics (if computation time is important).
Torsten
Torsten il 28 Nov 2024 alle 19:10
Modificato: Torsten il 28 Nov 2024 alle 19:20
My while loop is trying to find value of Psat at which fg as close to zero as possible
Then insert fg = 0 (or something close to 0) and solve for Psat:
x = [0.0035, 0.0314, 0.5426, 0.0857, 0.0572, 0.0076, 0.0245, 0.0075, 0.012, 0.0153, 0.026, 0.0302, 0.021, 0.0174, 0.0136, 0.011, 0.0111, 0.0095, 0.0086, 0.0068, 0.006, 0.0056, 0.0051, 0.0408];
PcMPa = [3.399, 7.382, 4.604, 4.880, 4.249, 3.648, 3.797, 3.381, 3.369, 3.012, 2.736, 2.486, 2.289, 2.096, 1.979, 1.824, 1.7, 1.524, 1.486, 1.4, 1.325, 1.294, 1.173, 1.08];
TcK= [126.3, 304.2, 190.6, 305.4, 369.8, 408.2, 425.2, 460.4, 469.7, 507.4, 540.3, 568.8, 594.6, 617.7,639, 658, 675, 693, 708, 723, 734, 748, 755, 768];
w =[0.045, 0.231, 0.0115, 0.0908, 0.1454, 0.1756, 0.1928, 0.2273, 0.251, 0.2957, 0.3506, 0.3978, 0.4437, 0.4902, 0.535, 0.575, 0.619, 0.659, 0.706, 0.742, 0.77, 0.79, 0.827, 0.907];
TK = 200;
R = 8.314;
Tri = TK./TcK;
Pri = @(Psat)Psat./PcMPa;
k = @(Psat)exp(5.37.*(1+w).*(1-Tri.^(-1)))./Pri(Psat);
fg = 0;
fun = @(Psat)sum(x.*(k(Psat)-1)./(1+fg*(k(Psat)-1)));
Psat = fsolve(fun,5)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
Psat = 3.3467

Accedi per commentare.

Categorie

Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by