Shapley based feature selection

2 visualizzazioni (ultimi 30 giorni)
MByk
MByk il 1 Mar 2025
Modificato: MByk il 11 Mar 2025
Hello everyone, I am trying to perform Shapley based feature selection. I wrote the code below but I did not use the Ytest variable. Xtest does not contain the class labels; they are in the Ytest variable. I am a little confused. Am I doing something wrong? Thanks for the help.
DataSet = load('Seeds.txt');
[~,nFeatures] = size(DataSet);
X = DataSet(:,(1:nFeatures - 1));
Y = DataSet(:,nFeatures);
c = cvpartition(Y, 'Holdout', 0.20, 'Stratify', true);
Xtrain = X(training(c), :);
Xtest = X(test(c), :);
Ytrain = Y(training(c));
Ytest = Y(test(c));
Mdl = fitcecoc(Xtrain, Ytrain);
LimeRes = shapley(Mdl);
FitRes = fit(LimeRes, Xtest);
plot(FitRes)
  3 Commenti
MByk
MByk il 2 Mar 2025
Sorry for the late reply. I’ve just uploaded the data.
MByk
MByk il 11 Mar 2025
Modificato: MByk il 11 Mar 2025
I found a Python example that can help: Python Example.

Accedi per commentare.

Risposta accettata

the cyclist
the cyclist il 2 Mar 2025
The Shapley values don't require the class labels (i.e. the actual responses) to determine feature importance.
The Shapley values only indicate, for a given model, how much each feature affects the predicted class label. For example, suppose you are trying to predict whether someone is going to repay their car loan on time. For borrower Alice, the model might predict "NO", because she already has a lot of debt. For borrower Bob, the model might also predict "NO", but because Bob has low income (even if he has low debt).
The Shapley values of debt and income will be different for Alice and Bob. It does not matter whether they actually default or not. The Shapley value is explaining only where the prediction came from.
I hope that helps.

Più risposte (1)

Walter Roberson
Walter Roberson il 2 Mar 2025
Modificato: Walter Roberson il 2 Mar 2025
YtestPred = predict(Mdl, Xtest);
test_accuracy = nnz(Ytest(:) == YtestPred(:)) / numel(Ytest) * 100;
fprintf('test accuracy: %.2f\n', test_accuracy);

Categorie

Scopri di più su MATLAB Mobile in Help Center e File Exchange

Prodotti


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by