quadgk AbsTol/RelTol parameters combinations

2 visualizzazioni (ultimi 30 giorni)
Alejandro
Alejandro il 14 Apr 2025
Commentato: Alejandro il 19 Apr 2025
Dear network.
I am having trouble getting the desired result of an integral involving Bessel functions Jo and Yo.
Need your help with a powerful set of combinations of the AbsTol/RelTol parameters that will help me get a low-error result
This is the equation I am trying to solve, with t as a parameter:
  2 Commenti
Torsten
Torsten il 15 Apr 2025
What is "the desired result" ? Do you have integral values of high precision to compare with ?
Alejandro
Alejandro il 15 Apr 2025
Hi Torsten, yes.
I have figures from various papers and books to compare with.
The current results I am obtaining in MATLAB using either the quadgk or integral commands are off by +- 10%, which requires an optimization of the AbsTol/RelTol parameters.

Accedi per commentare.

Risposte (1)

Torsten
Torsten il 15 Apr 2025
Modificato: Torsten il 15 Apr 2025
umin = 1e-16;
f = @(t,u) exp(-t*u.^2)./(u.*(besselj(0,u).^2+bessely(0,u).^2));
g = @(u) pi/2 * atan((2*double(eulergamma)-log(4)+2*log(u))/pi);
qD = @(t) 1 + 4/pi^2*( g(umin) + quadgk(@(u)f(t,u),umin,Inf) );
format long
t = 0.1:0.1:10;
plot(t,arrayfun(@(t)qD(t),t))
xlabel('t')
ylabel('qD')
grid on
  3 Commenti
Torsten
Torsten il 16 Apr 2025
Modificato: Torsten il 16 Apr 2025
Consider
syms u
f = u*(bessely(0,u)^2+1);
f = 
series(f)
ans = 
g = u*(4*(eulergamma-log(sym('2'))+log(u))^2/sym(pi)^2+1)
g = 
int(1/g)
ans = 
Limit for int(1/g) as u -> 0+ is pi/2 * atan(-Inf) = -pi^2/4.
Thus for f(t,u) = exp(-t*u.^2)./(u.*(besselj(0,u).^2+bessely(0,u).^2)) I computed
int(f,0,Inf) = int(f,0,umin) + int(f,umin,Inf) ~ int(1/g,0,umin) + int(f,umin,Inf) = pi/2*atan((2*eulergamma-log(4)+2*log(umin))/pi) + pi^2/4 + int(f,umin,Inf)
Now multiply by 4/pi^2 to get qD.
Alejandro
Alejandro il 19 Apr 2025
Thanks for your useful feedback Torsten. Will generate the values and compere against my reference tables.

Accedi per commentare.

Categorie

Scopri di più su Special Functions in Help Center e File Exchange

Prodotti


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by