Different results accross multiple runs

1 visualizzazione (ultimi 30 giorni)
Hello,
I'm facing a problem that when i run same classification algorithm multiple times, I find that the accuracy results differ. I fixed the seed value using rng function, set the learnables (weights and biases) of the network manulay using Xavier(Glorot), and I also restrictied to use only one CPU and not to use GPU. Any Help?
I've read that it's accepted to have slightly differences among multiple runs and I have to get the average and the STD of the results and use them as the final score of my algorithm is it true if so please give me a refereance for that. Thanks in advance.

Risposta accettata

Joss Knight
Joss Knight il 10 Lug 2025
It might help to follow some of the suggestions here, even if you are not using a GPU:
You should be able to get deterministic results for everything by controlling the rng seed as long as your execution environment is not changing (e.g. a laptop is throttling, memory usage is changing due to execution of other applications and so forth).
  3 Commenti
Joss Knight
Joss Knight il 10 Lug 2025
It's hard to intuit how, if everything is on the CPU. Are you sure you are running the same code, resetting the rng before you do anything else, and re-creating all the networks and datastores? Also, you cannot use background preprocessing for your data.
Joss Knight
Joss Knight il 11 Lug 2025
Hi! I see you posted some code but then deleted it. Hopefully this is because you worked out how to get reproducible results. If not, let me know and I can look into it further.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Image Data Workflows in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by