generating random particles in a cylinder

2 visualizzazioni (ultimi 30 giorni)
hamed
hamed il 11 Giu 2015
I am trying to generate random particles in a cylinder corresponds to a finite volume fraction. Therefore, each volume fraction results in different number of particles. But, as volume fraction increases, say number of particles increases, the simulation time increases dramatically. For example, for 1100 particles (about volume fraction equal to 0.3) it takes just a minute to generate them in a way that they maintain within the cylinder boundaries and also do not overlap. However, if I want 1400 particles corresponds to volume fraction 0.4 it took about 24 hours and still not finished. Any suggestion is appreciated. The code is as below;
vol_frac=0.400831;
lz=0.04;
lx=lz;ly=lx;
x(1)=(2*lz-2*R)*rand(1)-lz+R;
y(1)=(2*sqrt(lz^2-x(1)^2)-2*R)*rand(1)-sqrt(lz^2-x(1)^2)+R;
z(1)=(2*lz-2*R)*rand(1)-lz+R;
%no. of particles
Npart=round(6*0.08^3*vol_frac/4/0.006^3);
%Npart=1100;
for i=2:Npart;
x(i)=(2*lz-2*R)*rand(1)-lz+R;
y(i)=(2*sqrt(lz^2-x(i)^2)-2*R)*rand(1)-sqrt(lz^2-x(i)^2)+R;
z(i)=(2*lz-2*R)*rand(1)-lz+R;
k=i-1;
while k>=1;
c=((y(k)-y(i))^2+(x(k)-x(i))^2+(z(k)-z(i))^2)^0.5;
if c<=2*R
x(i)=(2*lz-2*R)*rand(1)-lz+R;
y(i)=(2*sqrt(lz^2-x(i)^2)-2*R)*rand(1)-sqrt(lz^2-x(i)^2)+R;
z(i)=(2*lz-2*R)*rand(1)-lz+R;
k=i-1;
else
k=k-1;
end
end
end
  7 Commenti
hamed
hamed il 14 Giu 2015
I'm still not getting appropriate answer. I think the problem is due to random number rejection by overlapping check which results in predictable random numbers. However, I have revised the previous code due to mapping like this and becomes faster;
%Initial random position of particles (Normal distribution)
vol_frac=0.400831;
%no. of particles
rng shuffle
% Npart=1100;
R=0.003;
Npart=round(6*0.08^3*vol_frac/4/0.006^3);
x=zeros(1,Npart);y=zeros(1,Npart);z=zeros(1,Npart);
lz=0.04;
lx=lz;ly=lx;
teta=2*pi*rand;
ri=(lz-R)*sqrt(rand);
x(1)=ri*cos(teta);
y(1)=ri*sin(teta);
z(1)=(2*lz-2*R)*rand-lz+R;
for i=2:Npart;
teta=2*pi*rand;
ri=(lz-R)*sqrt(rand);
x(i)=ri*cos(teta);
y(i)=ri*sin(teta);
z(i)=(2*lz-2*R)*rand-lz+R;
k=i-1;
while k>=1;
c=((y(k)-y(i))^2+(x(k)-x(i))^2+(z(k)-z(i))^2)^0.5;
if c<2*R
teta=2*pi*rand;
ri=(lz-R)*sqrt(rand);
x(i)=ri*cos(teta);
y(i)=ri*sin(teta);
z(i)=(2*lz-2*R)*rand-lz+R;
k=i-1;
else
k=k-1;
end
end
end
Denisse Campos Muñoz
Denisse Campos Muñoz il 17 Feb 2016
I used your code to generating particles in cylindrical coordinates and that these follow uniform distribution using random ('unif', ..., ...) and would like to know how to graph the particles.
How I can plot the distributed along the center of each particle?

Accedi per commentare.

Risposte (0)

Categorie

Scopri di più su Random Number Generation in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by