mex code did not give improvements as compraed to matlab code
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I converted a piece of Matlab code into mex. but I am not getting the time efficiency and it is far slower than matlab code. I don't know that what is the issue with code.. It's logic is working perfectly fine with correct answer. May be I need to destroy the arrays or I need to free the memory.. Can someone help me in the code?
#include "mex.h"
#include <conio.h>
#include <math.h>
#include<stdlib.h>
void loopy( float ImgWeight[256][256],float ImgTemp[256][256],float PatchSetT[62001][64],float Row[125], float Col[125],float Ni,float I[249][249], float IWaveletMatrix[8][8], float WaveletMatrix[8][8], float DctMatrix[10][10] )
{
float TranArray[10][64];
float PatchArray[10][8][8];
float PatchArra[10][8][8];
float Z[10][64];
float PatchSet[64][62001];
float CurPatchIndx[10];
int N=249;
int M=249;
int i,j,k,l,f,g,h,q,r,x,a,b,kTmp,rmax,rmin,cmax,cmin,y,zz;
float CurRow,CurCol,Off;
int temp=0;
int f2=64;
float sum22;
float Threshold=33.6f;
float ArrayNo=10;
float SearchWin=20;
float CurArray[64][10];
float C1[64][64];
float xi[64][10];
float sum12 = 0;
float multiply1[64][10];
float tran[10][64];
int looplengthN,looplengthM;
float z;
int ColIndx,RowIndx;
float C[64][64];
float multiply[64][10];
float tY[64][10];
float Y[10][64];
float tDctMatrix[10][10];
//
// looplengthN = sizeof Row/ sizeof (Row[0]);
// printf("%d\t",looplengthN);
// looplengthM = sizeof Col/ sizeof (Col[0]);
// printf("%d\t",looplengthM);
for (y = 0; y <125 ; y++){
for( zz = 0 ; zz < 125 ; zz++ ){
float **sum;
float *sum0;
float **sum1;
float *sum10;
float **B;
float *B0;
float **idx1;
float *idx10;
float *sum2;
float *v;
int *indexes;
float *idxl;
float *dis;
CurRow = Row[y];
CurCol = Col[zz];
Off= (CurCol-1)*Ni+CurRow;
rmin=((CurRow-20)<1)?1:(CurRow-20);
rmax=(N<(CurRow+20))?N:(CurRow+20);
cmin=((CurCol-20)<1)?1:(CurCol-20);
cmax=(M<(CurCol+20))?M:(CurCol+20);
q=rmax*cmax;
sum0= (float *)mxMalloc(q*f2*sizeof(*sum0));
sum= (float **)mxMalloc(q*sizeof(*sum));
for (i = 0; i < q; i++){
sum[i]=sum0+i*f2;
}
sum10= (float *)mxMalloc(q*f2*sizeof(*sum10));
sum1= (float **)mxMalloc(q*sizeof(*sum1));
for (i = 0; i < q; i++){
sum1[i]=sum10+i*f2;
}
B0= (float *)mxMalloc(q*f2*sizeof(*B0));
B= (float **)mxMalloc(q*sizeof(*B));
for (i = 0; i < q; i++){
B[i]=B0+i*f2;
}
idx10= (float *)mxMalloc(rmax*cmax*sizeof(*idx10));
idx1= (float **)mxMalloc(rmax*sizeof(*idx1));
for (i = 0; i < rmax; i++){
idx1[i]=idx10+i*cmax;
}
sum2= (float *)mxMalloc(q*sizeof(float));
v=(float *)mxMalloc(f2*sizeof(float));
idxl= (float *)mxMalloc(q*sizeof(float));
dis= (float *)mxMalloc(q*sizeof(float));
indexes= (int *)mxMalloc(q*sizeof(int));
for (i = 0; i < rmax; i++){
for( j = 0 ; j <cmax ; j++ ){
idx1[i][j]= I[i][j];
}}
for (i = 0; i < rmax; i++)
{ for (j = 0; j < cmax; j++)
{idxl[i + j*rmax] = idx1[i][j];}}
r=0;
for(l=0; l<(rmax*cmax); l++)
{r=idxl[l]-1;
for(k=0; k<f2; k++)
{B[l][k]=PatchSetT[r][k];
}}
for (i = 0,j=(Off-1); i <f2; i++)
{v[i] = PatchSetT[j][i]; }
for (i = 0; i<f2 ; i++) {
for (j = 0 ; j < (rmax*cmax); j++) {
sum[j][i] = B[j][i] - v[i];
sum1[j][i]= powf(sum[j][i],2); }}
for (i = 0; i <(rmax*cmax) ; i++) {
sum22=0;
for (j = 0 ; j < f2; j++) {
sum22+=sum1[i][j];}
sum2[i]=sum22;}
for(i = 0; i <(rmax*cmax) ; i++)
{ dis[i]= sum2[i]/f2;}
for( f = 0; f < rmax*cmax; f++)
indexes[f] = f;
for(g = 0; g < rmax*cmax; g++)
{for(h = 0; h < rmax*cmax; h++)
{if(dis[indexes[g]] < dis[indexes[h]])
{kTmp = indexes[g];
indexes[g] = indexes[h];
indexes[h] = kTmp;}}}
for (j = 0; j <10; j++)
{ temp=indexes[j];
CurPatchIndx[j]=idxl[temp];
}
for (i = 0; i < 62001; i++){
for( j = 0 ; j < 64 ; j++ ){
PatchSet[j][i] = PatchSetT[i][j];}}
x=0;
for(l=0; l<64; l++)
{
for(k=0; k<10; k++)
{ x=CurPatchIndx[k]-1;
CurArray[l][k]=PatchSet[l][x];
}
//printf("\n");
}
for ( i = 0; i < 10; i++){
for ( j = 0; j < 8; j++){
for ( k = 0; k < 8; k++)
{PatchArray[i][j][k] = CurArray[k * 8 + j][i];
}}}
for ( i = 0; i < 10; i++){
for ( j = 0; j < 8; j++){
for ( k = 0; k < 8; k++)
{
xi[k * 8 + j][i]=PatchArray[i][j][k] ;}}}
a,b=0;
for ( i = 0; i < 8; i++){
for ( j = 0; j < 8; j++){
for ( k = 0; k < 8; k++){
for ( l = 0; l < 8; l++){
a = ((i == 0) ? 0 : (i * 8));
b = ((j == 0) ? 0 : (j * 8));
C[k + a][l + b] = WaveletMatrix[i][j] * WaveletMatrix[k][l]; }}}}
for (i = 0; i < 64; i++) {
for (j = 0; j < 10; j++) {
for (k = 0; k < 64; k++) {
sum12 = sum12+ C[i][k]*xi[k][j];}
multiply[i][j] = sum12;
sum12 = 0;}}
for (i = 0; i < 64; i++){
for( j = 0 ; j < 10 ; j++ ){
tran[j][i] = multiply[i][j];}}
sum12=0;
for (i = 0; i < 10; i++) {
for (j = 0; j < 64; j++) {
for (k = 0; k < 10; k++) {
sum12 = sum12 + DctMatrix[i][k]*tran[k][j];}
TranArray[i][j] = sum12;
sum12 = 0;}}
for(i=0; i<10; i++){
for(j=0; j<64; j++){
{if (TranArray[i][j]<0)
{ Z[i][j]=TranArray[i][j]*(-1);}
else
{Z[i][j]=TranArray[i][j];}
}
if (Z[i][j]>Threshold)
{Z[i][j]=1;
}
else
{ Z[i][j]=0; }
Z[i][j]=TranArray[i][j]*Z[i][j];
}}
for (i = 0; i < 10; i++){
for( j = 0 ; j < 10 ; j++ ){
tDctMatrix[j][i] = DctMatrix[i][j];}}
sum12=0;
for (i = 0; i < 10; i++) {
for (j = 0; j < 64; j++) {
for (k = 0; k < 10; k++) {
sum12 = sum12 + tDctMatrix[i][k]*Z[k][j]; }
Y[i][j] = sum12;
sum12 = 0;}}
for( i = 0 ; i < 10 ; i++ ){
for (j = 0; j < 64; j++){
tY[j][i]=Y[i][j];
}}
a,b=0;
for ( i = 0; i < 8; i++)
{for ( j = 0; j < 8; j++)
{for ( k = 0; k < 8; k++)
for ( l = 0; l < 8; l++)
{ a = ((i == 0) ? 0 : (i * 8));
b = ((j == 0) ? 0 : (j * 8));
C1[k + a][l + b] = IWaveletMatrix[i][j] * IWaveletMatrix[k][l];
}}}
sum12=0;
for (i = 0; i < 64; i++) {
for (j = 0; j < 10; j++) {
for (k = 0; k < 64; k++) {
sum12 = sum12 + C1[i][k]*tY[k][j];}
multiply1[i][j] = sum12;
sum12 = 0;}}
for ( i = 0; i < 10; i++){
for ( j = 0; j < 8; j++){
for ( k = 0; k < 8; k++)
{PatchArray[i][j][k] = multiply1[k * 8 + j][i];
}}}
for ( i =0; i <10; i++){
z=fmodf(CurPatchIndx[i],Ni);
if(z==0)
{RowIndx=(int)Ni;
}
else{RowIndx=(int)z;}
RowIndx =RowIndx-1;
ColIndx=(int)ceilf(CurPatchIndx[i]/Ni);
ColIndx= ColIndx-1;
for (g=0,j= RowIndx; g<8, j <= RowIndx+7;g++, j++) {
for ( h=0,k = ColIndx; h<8, k <= ColIndx+7;h++, k++) {
ImgTemp[k][j] = ImgTemp[k][j] + PatchArray[i][h][g];
ImgWeight[k][j]=ImgWeight[k][j]+1;
}}}
mxFree(sum2);
mxFree(v);
mxFree(indexes);
mxFree(idxl);
mxFree(dis);
mxFree(sum);
mxFree(sum1);
mxFree(B);
mxFree(idx1);
mxFree(sum0);
mxFree(sum10);
mxFree(B0);
mxFree(idx10);
}
}
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
//DECLARING ALL THE ARGUMENTS
float (*Patch)[64]; float *row; float *col; float Ni; float (*I)[249]; float (*IWM)[8]; float (*WM)[8]; float (*DM)[10];
//float PRECISION CORRESPONDANCE OF THE OUTPUT
float (*outMatrix)[256];
float (*outMatrix1)[256];
int dims[2] = {256,256};
Patch = (float (*)[64])mxGetData(prhs[0]);
row = (float *)mxGetData(prhs[1]);
col = (float *)mxGetData(prhs[2]);
I = (float (*)[249])mxGetData(prhs[3]);
IWM = (float (*)[8])mxGetData(prhs[4]);
WM = (float (*)[8])mxGetData(prhs[5]);
DM = (float (*)[10])mxGetData(prhs[6]);
Ni = (float)mxGetScalar(prhs[7]);
// SPECIAL CASE FOR ARRAYS
plhs[0] = mxCreateNumericArray(2,dims,mxSINGLE_CLASS,mxREAL);
plhs[1] = mxCreateNumericArray(2,dims,mxSINGLE_CLASS,mxREAL);
outMatrix = (float (*)[256])mxGetData(plhs[0]);
outMatrix1 = (float (*)[256])mxGetData(plhs[1]);
loopy(outMatrix,outMatrix1,Patch,row,col,Ni,I,IWM,WM,DM);
}
3 Commenti
Risposte (1)
Philip Borghesani
il 16 Giu 2015
I will hazard a guess that your performance problem is the allocation of data inside your for loops. Allocating memory is slow in matlab and c. You should be able to allocate buffers large enough for the operation up frount and reuse those buffers each loop.
I strongly suggest rewriting this code without multidimensional non contiguous arrays for data storage. This method of storing data is almost never used in production code because it leads to bugs and is inefficient.
10 Commenti
Philip Borghesani
il 17 Giu 2015
You are building unneeded multi-level arrays with this sort of code:
sum0= (float *)mxMalloc(q*f2*sizeof(*sum0));
sum= (float **)mxMalloc(q*sizeof(*sum));
for (i = 0; i < q; i++){
sum[i]=sum0+i*f2;
}
There is no need to build or allocate the sum array of pointers.
A later loop using sum can be rewritten as:
for (j = 0 ; j < (rmax*cmax); j++) {
float *sum=sum0+j*f2;
for (i = 0; i<f2 ; i++) {
sum[j] = B[j][i] - v[i]; // or use *sum=... and on the next line
// powf(*sum++,2); if you understand what it is doing
...
sum1 and B can be replaced the same way and the code should run much faster.
James Tursa
il 17 Giu 2015
Modificato: James Tursa
il 17 Giu 2015
"There is no need to build or allocate the sum array of pointers."
I'm afraid Abeera was just following a generic example I wrote in an earlier post of how one could use the [ ][ ] syntax for dynamic sized arrays. So don't blame him for that one.
As you point out, there are ways to avoid some of the malloc'ed arrays by moving towards a linear indexing model. E.g., you have traded his left-hand-side double index sum[j][i] for a single index sum[j]. And again I agree with this philosophy, that moving completely away from the multi-level [ ][ ] indexing syntax and instead embracing single level [ ] linear indexing models is preferable in the long run.
Vedere anche
Categorie
Scopri di più su Execution Speed in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!