how to calculate the output of neural network manually using input data and weights.
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
prabakaran jayaraman
il 19 Giu 2015
Risposto: Amir Qolami
il 12 Apr 2020
i am having ann program with 3 inputs and one output. i am using back propagation and feed forward network. the activation functions are tansig and purelin. no of layer is 2 and no of neuron in hidden layer is 20. i want to calculate the output of network manually using the input and weights(iw,lw,b) i need an equation to find the output. can you help me?
Risposta accettata
Greg Heath
il 25 Giu 2015
When I-dimensional "I"nput x and O-dimensional "O"utput target t are normalized via the default mapminmax (or mapstd),the relationship between the normalized input and output is
yn = repmat( b2, O, N ) + LW * tanh( repmat( b1 , I, N ) + IW * xn);
Thank you for formally accepting my answer
Greg
2 Commenti
Greg Heath
il 28 Giu 2015
Modificato: Greg Heath
il 28 Giu 2015
IW does not act on the original weights. It acts on the normalized weights. The default normalization documentation is
help mapminmax
doc mapminmax.
Search for examples using a subset of
greg xsettings tsettings
Greg
Più risposte (1)
Amir Qolami
il 12 Apr 2020
This works for any number of hidden layers and neurons;
function output = NET(net,inputs)
w = cellfun(@transpose,[net.IW{1},net.LW(2:size(net.LW,1)+1:end)],'UniformOutput',false);
b = cellfun(@transpose,net.b','UniformOutput',false);
tf = cellfun(@(x)x.transferFcn,net.layers','UniformOutput',false);
%%mapminmax on inputs
if strcmp(net.Inputs{1}.processFcns{:},'mapminmax')
xoffset = net.Inputs{1}.processSettings{1}.xoffset;
gain = net.Inputs{1}.processSettings{1}.gain;
ymin = net.Inputs{1}.processSettings{1}.ymin;
In0 = bsxfun(@plus,bsxfun(@times,bsxfun(@minus,inputs,xoffset),gain),ymin);
else
In0 = inputs;
end
In = cell(1,length(w)); Out = In;
In{1} = In0'*w{1}+b{1};
Out{1} = eval([tf{1},'(In{1})']);
for i=2:length(w)
In{i} = Out{i-1}*w{i}+b{i};
Out{i} = eval([tf{i},'(In{',num2str(i),'})']);
end
%%reverse mapminmax on outputs
if strcmp(net.Outputs{end}.processFcns{:},'mapminmax')
gain = net.outputs{end}.processSettings{:}.gain;
ymin = net.outputs{end}.processSettings{:}.ymin;
xoffset = net.outputs{end}.processSettings{:}.xoffset;
output = bsxfun(@plus,bsxfun(@rdivide,bsxfun(@minus,Out{end},ymin),gain),xoffset);
else
output = Out{end};
end
end
0 Commenti
Vedere anche
Categorie
Scopri di più su Define Shallow Neural Network Architectures in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!