How can I develop a dimensionless quantity using several dimensional values?

1 visualizzazione (ultimi 30 giorni)
I need to develop a dimensionless number using gas flow rate, diameter, rotational speed, power and...

Risposte (1)

Mukul Rao
Mukul Rao il 22 Giu 2015
Here is an example to determine the Reynolds Number given the dynamic viscosity (kg.m-1.s-1) , density rho (Kg/m^3), some length scale D (m) and velocity V (ms-1) . Please find the explanation in the code comments:
%Elementary Dimensions of mu are M,T,L
%mu = M / (LT)
%Elementary Dimensions of density rho are M,L
%rho = M / L^3
%Elementary Dimensions of length scale D is L
%D = L
%Elementary Dimensions of Velocity is L,T
%V = L/T
%There are 4 physcial variables mu,rho,D and V and 3 physical dimensions
% L,T,M
%By Buckingham's pi theorem, there is 1 dimensionless variable
%pi1 = (rho)^a1 * (V) ^b1 * (D) ^ c1 * mu
% Considering dimensions only, 1 = (M / L^3)^a1 * (L/T) ^b1 * (L) ^ c1 * M / (LT)
% or (LT) /M = M^(a1) * L^(-3a1 + b1 +c1) * T^(-b1)
%Hence comparing both sides, we are solving
% a1 = -1 ; -3a1 + b1 +c1 = 1; -b1 = 1;
Coeff = [1 0 0;-3 1 1;0 -1 0];
rhs = [-1 ; 1 ;1];
solution = Coeff\rhs;
fprintf('a1 = %f\tb1=%f\t,c1=%f\t\n',solution)
%The final result is the Reynolds number Re = 1/pi1 = rho*V*D/ mu
Note that it is certainly possible to create some function that accepts the powers of the physical dimensions as the input and auto-generates the required powers to create the dimensionless variables. Here is an example from file exchange that I believe does this :

Categorie

Scopri di più su Fluid Dynamics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by