ODE45 and dsolve result discrepency

24 visualizzazioni (ultimi 30 giorni)
I'm having a weird problem. I'm trying to solve a 2nd order ode with both ode45 and dsolve. The results are fine as long as I have non-zero initial conditions but they don't match when the equation has zero initial condition. Any idea why this is happening? Also, which one would be the right choice as I am supposed to implement it in a larger piece of code.
Here is my script:
clc
%clear all
m=3.4e6;
k=3.51e10;
c=13.8e6;
f=7.2578;
[t1,x]=ode45(@pend,[0 5],[0 0] );
j=1;
t2=0:0.01:5;
l=length(t2);
disp2=zeros(l,1);
vel2=zeros(l,1);
for t=0:0.01:5
sol_disp2=dsolve('m*D2x+c*Dx+k*x=f','x(0)=0,Dx(0)=0');
sol_vel2=diff(sol_disp2);
disp2(j)=vpa(subs(sol_disp2));
vel2(j)=vpa(subs(sol_vel2));
j=j+1;
end
subplot(2,2,1)
plot(t1,x(:,1))
subplot(2,2,2)
plot(t1,x(:,2))
subplot(2,2,3)
plot(t2,disp2)
subplot(2,2,4)
plot(t2,vel2)
and the ode45 function:
function dxdt = pend(t,x)
m=3.4e6;
k=3.51e10;
c=13.8e6;
f=7.2578;
x1=x(1);
x2=x(2);
% fun=@(x) sin(x)/z2;
dxdt=[x2; (f-c*x2-k*x1)/m];
end
thanks in advance
  1 Commento
Torsten
Torsten il 11 Ago 2015
Just insert your symbolic solution into
m*D2x+c*Dx+k*x=f, x(0)=x'(0)=0
to see whether it's correct or not.
Best wishes
Torsten.

Accedi per commentare.

Risposta accettata

Nitin Khola
Nitin Khola il 12 Ago 2015
Hey Ridwad,
I understand you are facing discrepancies in solutions from "dsolve" and "ode45" for zero initial conditions. It appears that the system has faster dynamics compared to the default tolerances in "ode45". You can set the absolute and relative tolerances to smaller values using "odeset" as follows:
>> options = odeset('RelTol', 1e-10, 'AbsTol', 1e-12);
>> [t1,x]=ode45(@pend,[0 5],[0 0],options);
Setting these tolerances to appropriate values get the solutions from the two solvers to match as shown below. Hope this helps.
  1 Commento
Ridwan Hossain
Ridwan Hossain il 13 Ago 2015
Hi Nitin, Thank you very much. It solves the problem.
Ridwan

Accedi per commentare.

Più risposte (0)

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by