bisection method.

3 visualizzazioni (ultimi 30 giorni)
ruth okoh
ruth okoh il 10 Dic 2011
Risposto: Vidhi Agarwal il 2 Giu 2023
x^3 - 1.6x^2 - 2.4x + 0.3 finding the midpoint through bisection method, using both matcad & mathlab.
  2 Commenti
Walter Roberson
Walter Roberson il 10 Dic 2011
http://www.mathworks.com/matlabcentral/answers/6200-tutorial-how-to-ask-a-question-on-answers-and-get-a-fast-answer
Jan
Jan il 10 Dic 2011
Dear ruth okoh, do you have a question?

Accedi per commentare.

Risposte (1)

Vidhi Agarwal
Vidhi Agarwal il 2 Giu 2023
Please find the attched Code for the following question
% Define the function f(x)
f = @(x) x^3 - 1.6*x^2 - 2.4*x + 0.3;
% Define the interval [a,b]
a = -1;
b = 3;
% Define the tolerance (the maximum error allowed)
tol = 1e-6;
% Set the maximum number of iterations
max_iter = 1000;
% Initialize the variables
iter = 0;
midpoint = (a + b) / 2;
fa = f(a);
fb = f(b);
% Use a while loop to iteratively refine the midpoint
while abs(f(midpoint)) > tol && iter < max_iter
midpoint = (a + b) / 2;
fm = f(midpoint);
if fm == 0
break;
elseif sign(fm) == sign(fa)
a = midpoint;
fa = fm;
else
b = midpoint;
fb = fm;
end
iter = iter + 1;
end
% Display the results
fprintf('The midpoint of the function f(x) = x^3 - 1.6x^2 - 2.4x + 0.3 is: %f\n', midpoint);
The midpoint of the function f(x) = x^3 - 1.6x^2 - 2.4x + 0.3 is: 0.116597
This code provide the solution of equation f by bisection method.
if you want to find olution of more equation by bisection method you can just change the function f.

Categorie

Scopri di più su Resizing and Reshaping Matrices in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by