By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?

1 visualizzazione (ultimi 30 giorni)
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks

Risposta accettata

Greg Heath
Greg Heath il 15 Nov 2015
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
  2 Commenti
coqui
coqui il 18 Nov 2015
thank you Greg.
I only have 1 series, I have used FITNET. To continue beyond the original data (for example, 50 points) how I can do it?
Greg Heath
Greg Heath il 18 Nov 2015
Modificato: Greg Heath il 18 Nov 2015
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by