Does anyone know how to figure out a workaround to avoid computing overflow/underflow/NaN/inf in this algorithm?
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
M14 = Signal.^14;
M12 = Signal.^12 ; M10 = Signal.^10;
M8 = Signal.^8 ; M6 = Signal.^6;
M4 = Signal.^4 ; M2 = Signal.^2;
S14 = Sigma.^14;
S12 = Sigma.^12 ; S10 = Sigma.^10;
S8 = Sigma.^8 ; S6 = Sigma.^6;
S4 = Sigma.^4 ; S2 = Sigma.^2;
nPiD2 = pi/2;
sqrtNpiD2 = sqrt(nPiD2);
n1D2 = 1/2;
n1D4 = 1/4;
n1DM10Sig = 1./(M10.*Sigma);
n1DM12Sig = 1./(M12.*Sigma);
alpha = M2./S2;
nAlphaD4 = n1D4*alpha;
FirstTerm = n1DM10Sig.*(M12 + 9*M10.*S2 - 15*M8.*S4 + 90*M6.*S6 - 495*M4.*S8 + 2160*M2.*S10 - 5760*S12).*besseli(0,nAlphaD4);
SecondTerm = n1DM12Sig.*(M14 + 7*M12.*S2 - 27*M10.*S4 + 150*M8.*S6 - 855*M6.*S8 + 4320*M4.*S10 - 17280*M2.*S12 + 46080*S14).*besseli(1,nAlphaD4);
biasedSignal = n1D2*sqrtNpiD2*exp(-nAlphaD4).*(FirstTerm + SecondTerm);
As you can imagine, because of the powers of these numbers being rather high, I am running into issues with computing inf/NaN where I don't actually want it. Is there a way to avoid computing these values?
0 Commenti
Risposta accettata
Jan
il 15 Nov 2015
You can calculate the logarithm of all equations to keep the ranges of the values inside the limits. Replace besseli by its taylor series to build its log.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Loops and Conditional Statements in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!