TDNN multistep prediction with unknown future data for the target
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hugo Mendonça
il 16 Nov 2015
Commentato: Hugo Mendonça
il 17 Nov 2015
Hi, everyone!
I am a little bit confused how to use a time delay neural network for multistep ahead prediction.
By my system characteristics, I must use a time delay neural network and not others. So, from previous measurement, I know the input and target time series, where:
Xdata(1:500) (input)
Tdata(1:500) (target)
Let's create the neural network:
net = timedelaynet(1:10,10);
[Xs,Xi,Ai,Ts] = preparets(net,Xdata,Tdata);
net = train(net,Xs,Ts,Xi,Ai);
I can clearly understand all the procedure until this point. However, I do not know how to prepare the new input data to be predicted and to use the net. I mean, in the future, I will just know the input data. So, how I could predict it? For example:
Xnew1(1:50);
Y1 = net(Xnew1,Xi,Ai);
Ans further, for a new data:
Xnew2(51:100);
Y2 = net(Xnew2,Xi,Ai);
Would it be the same? With the same Xi and Ai?
Thanks for helping!
0 Commenti
Risposta accettata
Greg Heath
il 17 Nov 2015
In general, PREPARETS will yield the correct inputs. However, for TIMEDELAYNET, just use common sense:
Ai = {} % There is no feedback
Xi = Xnew2(:,1:10);
Xnew2s = Xnew2(:, 10:end);
Hope this helps.
Thank you for formally accepting my answer
Greg
PS: See my tutorials
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!