SVM Kerkel Scale Auto
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello!
I am currently working with SVMs. I am using the Gaussian kernel function and I want to quickly find a good parameter for my training data (I am only concerned with the sigma/gamma, not with the soft margin C. For the soft margin I am using another method)
In the Matlab documentation is says: "Pass the data to fitcsvm, and set the name-value pair arguments 'KernelScale','auto'. Suppose that the trained SVM model is called SVMModel. The software uses a heuristic procedure to select the kernel scale. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a random number seed using rng before training the classifier."
So, what I wanted to know: is this heuristic trying to select the "best" parameter with respect to my training data?
Thank you,
1 Commento
sh10101
il 23 Ott 2017
Hi,
I am also looking for an answer to you question. Did you find a suitable answer during your time studying SVMs?
Thank you,
Risposte (0)
Vedere anche
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!