Help plotting FFT from column vector with real and imaginary parts.
10 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Robert Evans
il 30 Nov 2015
Commentato: Joseph Nichols
il 24 Giu 2023
Hello, I'm attempting to plot the fft from the data taken from an oscilloscope and saved in Excel.
I've saved the data in matlab as a column vector with 200 data points of real and imaginary parts, called 'data', and I'm trying to get an accurate FFT plot. The plot that comes out doesn't look like the FFT spikes I'm expecting; rather its just a strange squiggle. I was wondering if anybody has any insight into what I'm doing wrong. My code is:
>> freq = fft (data)
freq =
-1.2128 + 0.0000i
2.1644 + 5.0673i
0.2578 + 1.0098i
0.0654 + 0.6253i
0.0270 + 0.4352i
0.0174 + 0.3877i
0.0068 + 0.3035i
-0.0008 + 0.2554i
-0.0048 + 0.2123i
-0.0101 + 0.1999i
0.0021 + 0.1944i
-0.0191 + 0.1507i
-0.0352 + 0.1421i
-0.0275 + 0.1331i
-0.0235 + 0.1287i
-0.0528 + 0.1290i
-0.0094 + 0.0996i
-0.0388 + 0.0833i
-0.0216 + 0.0892i
-0.0338 + 0.0902i
-0.0159 + 0.0837i
-0.0284 + 0.0609i
-0.0360 + 0.0834i
-0.0358 + 0.0962i
-0.0206 + 0.0791i
-0.0261 + 0.0670i
-0.0314 + 0.0603i
-0.0204 + 0.0536i
-0.0122 + 0.0511i
-0.0247 + 0.0404i
-0.0297 + 0.0425i
-0.0275 + 0.0417i
-0.0325 + 0.0510i
-0.0250 + 0.0568i
-0.0192 + 0.0415i
-0.0296 + 0.0531i
-0.0199 + 0.0475i
-0.0255 + 0.0470i
-0.0340 + 0.0470i
-0.0225 + 0.0298i
-0.0254 + 0.0361i
-0.0179 + 0.0413i
-0.0312 + 0.0294i
-0.0364 + 0.0124i
-0.0237 + 0.0331i
-0.0264 + 0.0207i
-0.0172 + 0.0344i
-0.0181 + 0.0243i
-0.0486 + 0.0343i
-0.0056 + 0.0411i
-0.0436 + 0.0328i
-0.0230 + 0.0237i
-0.0372 + 0.0243i
-0.0291 + 0.0368i
-0.0212 + 0.0038i
-0.0266 + 0.0212i
-0.0309 + 0.0148i
-0.0411 + 0.0130i
-0.0279 + 0.0245i
-0.0151 + 0.0134i
-0.0347 + 0.0158i
-0.0324 + 0.0211i
-0.0287 + 0.0202i
-0.0305 + 0.0307i
-0.0145 + 0.0180i
-0.0227 + 0.0106i
-0.0480 + 0.0169i
-0.0270 + 0.0098i
-0.0301 + 0.0193i
-0.0271 + 0.0160i
-0.0410 + 0.0047i
-0.0239 + 0.0182i
-0.0198 + 0.0074i
-0.0419 + 0.0206i
-0.0228 + 0.0139i
-0.0150 + 0.0014i
-0.0281 + 0.0141i
-0.0280 + 0.0145i
-0.0460 + 0.0218i
-0.0194 + 0.0152i
-0.0303 - 0.0020i
-0.0215 + 0.0226i
-0.0372 - 0.0002i
-0.0243 + 0.0146i
-0.0262 + 0.0152i
-0.0350 + 0.0149i
-0.0252 + 0.0092i
-0.0154 + 0.0027i
-0.0391 - 0.0037i
-0.0301 + 0.0099i
-0.0439 - 0.0088i
-0.0103 + 0.0423i
-0.0094 - 0.0096i
-0.0434 + 0.0049i
-0.0310 + 0.0006i
-0.0493 + 0.0002i
0.0009 + 0.0156i
-0.0324 - 0.0052i
-0.0360 + 0.0146i
-0.0138 - 0.0139i
-0.0548 + 0.0000i
-0.0138 + 0.0139i
-0.0360 - 0.0146i
-0.0324 + 0.0052i
0.0009 - 0.0156i
-0.0493 - 0.0002i
-0.0310 - 0.0006i
-0.0434 - 0.0049i
-0.0094 + 0.0096i
-0.0103 - 0.0423i
-0.0439 + 0.0088i
-0.0301 - 0.0099i
-0.0391 + 0.0037i
-0.0154 - 0.0027i
-0.0252 - 0.0092i
-0.0350 - 0.0149i
-0.0262 - 0.0152i
-0.0243 - 0.0146i
-0.0372 + 0.0002i
-0.0215 - 0.0226i
-0.0303 + 0.0020i
-0.0194 - 0.0152i
-0.0460 - 0.0218i
-0.0280 - 0.0145i
-0.0281 - 0.0141i
-0.0150 - 0.0014i
-0.0228 - 0.0139i
-0.0419 - 0.0206i
-0.0198 - 0.0074i
-0.0239 - 0.0182i
-0.0410 - 0.0047i
-0.0271 - 0.0160i
-0.0301 - 0.0193i
-0.0270 - 0.0098i
-0.0480 - 0.0169i
-0.0227 - 0.0106i
-0.0145 - 0.0180i
-0.0305 - 0.0307i
-0.0287 - 0.0202i
-0.0324 - 0.0211i
-0.0347 - 0.0158i
-0.0151 - 0.0134i
-0.0279 - 0.0245i
-0.0411 - 0.0130i
-0.0309 - 0.0148i
-0.0266 - 0.0212i
-0.0212 - 0.0038i
-0.0291 - 0.0368i
-0.0372 - 0.0243i
-0.0230 - 0.0237i
-0.0436 - 0.0328i
-0.0056 - 0.0411i
-0.0486 - 0.0343i
-0.0181 - 0.0243i
-0.0172 - 0.0344i
-0.0264 - 0.0207i
-0.0237 - 0.0331i
-0.0364 - 0.0124i
-0.0312 - 0.0294i
-0.0179 - 0.0413i
-0.0254 - 0.0361i
-0.0225 - 0.0298i
-0.0340 - 0.0470i
-0.0255 - 0.0470i
-0.0199 - 0.0475i
-0.0296 - 0.0531i
-0.0192 - 0.0415i
-0.0250 - 0.0568i
-0.0325 - 0.0510i
-0.0275 - 0.0417i
-0.0297 - 0.0425i
-0.0247 - 0.0404i
-0.0122 - 0.0511i
-0.0204 - 0.0536i
-0.0314 - 0.0603i
-0.0261 - 0.0670i
-0.0206 - 0.0791i
-0.0358 - 0.0962i
-0.0360 - 0.0834i
-0.0284 - 0.0609i
-0.0159 - 0.0837i
-0.0338 - 0.0902i
-0.0216 - 0.0892i
-0.0388 - 0.0833i
-0.0094 - 0.0996i
-0.0528 - 0.1290i
-0.0235 - 0.1287i
-0.0275 - 0.1331i
-0.0352 - 0.1421i
-0.0191 - 0.1507i
0.0021 - 0.1944i
-0.0101 - 0.1999i
-0.0048 - 0.2123i
-0.0008 - 0.2554i
0.0068 - 0.3035i
0.0174 - 0.3877i
0.0270 - 0.4352i
0.0654 - 0.6253i
0.2578 - 1.0098i
2.1644 - 5.0673i
>> plot (freq)
Any help would be appreciated.
0 Commenti
Risposta accettata
Rick Rosson
il 1 Dic 2015
Modificato: Rick Rosson
il 1 Dic 2015
N = length(data);
freq = fftshift(fft(data))/N;
plot(abs(freq));
Più risposte (1)
Vedere anche
Categorie
Scopri di più su Fourier Analysis and Filtering in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!