While loop runs infinitely

4 visualizzazioni (ultimi 30 giorni)
Anthony Siddique
Anthony Siddique il 1 Dic 2015
Commentato: Torsten il 1 Dic 2015
I'm trying to create a function that takes two parameters: x and threshold. X is the angle and the threshold is the percent error I need to get when approximating sine with the taylor series. However my while loop runs infinitely and I'm very confused as to how do go about fixing it.
Here's what I have so far.
function [approx, terms] = approx_sine(x, threshold)
approx = x; % Initial approximation
terms = 0; % Number of additional terms added to improve the approximation;
% Write your code here using a while loop to improve the above approximation
while threshold <= abs((sin(x)-approx)/sin(x))
terms = terms + 2;
approx = (-1)^(terms+1)*(x.^terms)/ factorial(terms)+x;
end
end

Risposta accettata

Thorsten
Thorsten il 1 Dic 2015
Modificato: Thorsten il 1 Dic 2015
The code for approximation is wrong. There are some errors in your formula: term takes values 0, 2, 4, ... but should take values 1,3,5,7; the (-1)^n changes sign with every new term, but since your term is always even, (-1)^(term+1) is always odd; and finally you add the n'th approximation term to the initial approximation x, instead of adding it to the most recent approximation.
This works
function [approx, n] = approxsine(x, threshold)
approx = x; % Initial approximation
n = 0; % Number of additional terms added to improve the approximation;
% Write your code here using a while loop to improve the above approximation
while threshold <= abs((sin(x)-approx)/sin(x))
n = n + 1;
approx = approx + (-1)^(n)*x.^(2*n+1)/factorial(2*n+1);
end
end
  2 Commenti
Image Analyst
Image Analyst il 1 Dic 2015
And I'm a very strong advocate of failsafes, especially in while loops to prevent just this problem of infinite loops. Check the loop counter and if it's more than you ever realistically expect, bail out with an error message:
n = 1;
nMax = 1000000
while threshold <= abs((sin(x)-approx)/sin(x)) && n < nMax
n = n + 1;
approx = approx + (-1)^(n)*x.^(2*n+1)/factorial(2*n+1);
end
if n >= nMax
errorMessage = sprintf('No solution found after %d iterations!', n-1);
uiwait(errordlg(errorMessage));
end
Note the additional check of "&& n < nMax" I added to the while line.
Torsten
Torsten il 1 Dic 2015
Since sin(x) < = 1, better use absolute instead of relative error within error estimate:
while threshold <= abs(sin(x)-approx)
Best wishes
Torsten.

Accedi per commentare.

Più risposte (1)

Walter Roberson
Walter Roberson il 1 Dic 2015
Remove the line
threshold = abs((sin(x)-approx)/sin(x))
It is overwriting the threshold that you passed in.
  2 Commenti
Anthony Siddique
Anthony Siddique il 1 Dic 2015
I'm still having the same problem. The while loop won't resolve.
Walter Roberson
Walter Roberson il 1 Dic 2015
>> limit((-1)^(terms+1)*x^terms/factorial(terms), terms = infinity);
0
Your approx is (-1)^(terms+1)*x^terms/factorial(terms) + x . As I indicate above, as terms increases, the first part of that tends to 0 for all x. With the first part tending to 0, only the second part will start to matter, the "+ x" part. Your approx goes to x.
Your termination test then becomes
threshold <= abs((sin(x)-x)/sin(x))
or threshold <= abs(1 - x/sin(x))
For any given threshold there is a limited range of x that can satisfy this, and that range of x does not increase smoothly with the threshold.

Accedi per commentare.

Categorie

Scopri di più su Special Functions in Help Center e File Exchange

Prodotti

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by