6 Simultaneous equations with 6 Unknowns
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Please can someone help me with a MATLAB program that can solve 6 simultaneous euations with 6 unknowns using either crammer's rule or gauss elimination method. Thanks
Risposta accettata
the cyclist
il 18 Gen 2012
Modificato: John Kelly
il 26 Feb 2015
I think you probably want to use the mldivide operator.
2 Commenti
MJTHDSN
il 12 Apr 2018
Dear Matlabers,
I have a similar question. Let`s assume the equations as below:
SN = rnd(5,1); a = SN(1); b = SN(2); c = SN(3); d = SN(4); e = SN(5); f = SN(6);
eq1 = a*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(4)*x(5))+(x(5)^2)) == 0;
eq2 = b*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)+(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq3 = c*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)+(2*x(4)*x(5))+(x(5)^2)) == 0;
eq4 = d*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-2*x(1)*(x(4)^2)+ (x(4)^2)-(2*x(1)*x(4)*x(5))-(x(4)*x(5))+(x(5)^2)) == 0;
eq5 = e*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(1)^2)*(x(4)^2)-(2*x(1)*x(4)*x(5))+(x(5)^2)) == 0;
eq6 = f*((x(1)^2)*(x(2)^2)+(x(1)^2)*(x(3)^2)-2*x(1)*(x(2)^2)+(x(2)^2))-((x(4)^2)-(2*x(4)*x(5))+(x(5)^2)) == 0;
here, a,b,c,d,e,f are numbers (0.43 for example). For now I consider them as SN(i):
I want to find x(1),...,x(5) values.
I have tried many ways but no solution was found.
Would you mind to help me with my problem?
Best,
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!