Why does grid search cross validation give same value of mean square error for different values of C and gamma in support vector regression ?
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am using libsvm in matlab for time series prediction using support vector regression . When I use grid search cross validation to select parameters C and gamma, the value of cross validation mean square error is coming same for different values of these parameters.So,by default the best C and gamma are the first values in the given range of parameters which is clearly not the case.
How can I sort this issue and find best value of parameters ?
My code is as follows,
[C,gamma] = meshgrid( -10:1:10, -10:1:10);
for j=1:numel(C) mse_cv(j) = svmtrain(svm_label,svm_data, ... sprintf('-s %d -t %d -c %f -g %f -p %f -v %d -h %d ',s,t, 2^C(j), 2^gamma(j),eps, folds,h )); end
here,
svm_label =
49.6665 49.6665 49.6668 49.6670 49.6671
and
svm_data =
49.6664 49.6665 49.6665 49.6668 49.6670
eps=0.005 ,t=2,s=3,v=5 and h=0.
1 Commento
Aagya Niraula
il 17 Feb 2019
hey Sharda! Is your problem solved? As I am getting stuck with the same problem so can you tell me how did you solve it if possible.
Risposte (0)
Vedere anche
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!