MATRIX COFACTOR

422 visualizzazioni (ultimi 30 giorni)
Mariana
Mariana il 2 Feb 2012
Commentato: Walter Roberson il 11 Ott 2021
I need to know a function to calculate the cofactor of a matrix, thank a lot!
  7 Commenti
Natasha St Hilaire
Natasha St Hilaire il 7 Ott 2021
What is "menor" short for?
Walter Roberson
Walter Roberson il 8 Ott 2021
I suspect that the English word would be "minor". The Spanish word "menor" can be translated as English "minor" in some situations.

Accedi per commentare.

Risposta accettata

Walter Roberson
Walter Roberson il 2 Feb 2012
  10 Commenti
Mariana
Mariana il 7 Feb 2012
Yes, I right-click on the shortcut and select to run as administrator. And I save the function on the lib file, and the function work with matrix.. But when I close and open again the function when I try to use the function a message say that it is Undefined..
Mariana
Mariana il 7 Feb 2012
Walter,
I thing I get it.. I forget to add the function to the PATH through the SET PATH in the menu file.. Thank you very much for all..
Just one question more.. Matlab run in linux? what distribution is better?

Accedi per commentare.

Più risposte (2)

Dr. Murtaza Ali Khan
Dr. Murtaza Ali Khan il 28 Set 2019
A = [
2 4 1
4 3 7
2 1 3
]
detA = det(A)
invA = inv(A)
cofactorA = transpose(detA*invA)
  2 Commenti
Franco Salcedo Lópezz
Franco Salcedo Lópezz il 14 Nov 2019
Modificato: Franco Salcedo Lópezz il 14 Nov 2019
Here I leave this code, I hope it helps. Regards
function v = adj(M,i,j)
t=length(M);
v=zeros(t-1,t-1);
ii=1;
ban=0;
for k=1:t
jj=1;
for m=1:t
if ( (i~=k)&&(j~=m) )
v(ii,jj)=M(k,m);
jj++;
ban=1;
endif
endfor
if(ban==1)ii++;ban=0;endif
endfor
Walter Roberson
Walter Roberson il 11 Ott 2021
This is not MATLAB code. It might be Octave.

Accedi per commentare.


Francisco Trigo
Francisco Trigo il 6 Feb 2020
The matrix confactor of a given matrix A can be calculated as det(A)*inv(A), but also as the adjoint(A). And this strange, because in most texts the adjoint of a matrix and the cofactor of that matrix are tranposed to each other. But in MATLAB are equal. I found a bit strange the MATLAB definition of the adjoint of a matrix.
  1 Commento
Zuhri Zuhri
Zuhri Zuhri il 28 Set 2021
adjoint matrix is ​​the transpose of the cofactor matrix so the above result is correct

Accedi per commentare.

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by