Simpson's Rule
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
cee878
il 25 Apr 2016
Risposto: Roger Stafford
il 25 Apr 2016
I coded Simpson's Rule, but I'm not sure if it's right.
f = @(x) exp(-x.^2);
true = integral(f, 0, 1);
%simpson's rule
n = 128;
k= n/2;
a = 0; b = 1;
h = (b-a)/n;
x = a + h;
sum1 = (h/3)*(f(b)+ f(a));
sum1 = sum1 + (4*h/3)*f(x);
for j = 1:n-1
x1 = a+(2*j)*h;
x2 = a + (2*j+1)*h;
sum1 = sum1 + (2*h/3)*f(x1)+(4*h/3)*f(x2);
end
error1 = abs(true-sum1);
fprintf(' Simpsons %d : %0.8f \n', n, sum1);
fprintf('Simpsons Error: %0.8f \n', error1);
1 Commento
Geoff Hayes
il 25 Apr 2016
Chris - what makes you think that the algorithm has been coded incorrectly? Presumably you must have a set of test data that you will use to validate the above. What do you notice when you do so?
Risposta accettata
Roger Stafford
il 25 Apr 2016
I think you made an error on the line
for j = 1:n-1
It should be
for j = 1:k-1
where k = n/2. As it stands now, the x2 reaches a value of a+(2*n-1)*h which is far beyond the range from 0 to 1.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!