k-means clustering algorithm

4 visualizzazioni (ultimi 30 giorni)
zhala sarkawt
zhala sarkawt il 22 Mag 2016
Commentato: Walter Roberson il 28 Dic 2017
For the data set shown below, execute the k-means clustering algorithm with k=2 till convergence. You should declare convergence when the cluster assignments for the examples no longer change. As initial values, set µ1 and µ2 equal to x(1) and x(3) respectively. Show your calculations for every iteration. x1 x2 1 1 1,5 2 2 1 2 0,5 4 3 5 4 6 3 6 4
1. You should start your calculation first by initializing your µ1 and µ2 as shown below. µ1 = x(1) =(1,1) µ2 = x(3) =(2,1) 2. For every iteration till convergence find c(i) for i = {1,2,3,4,5,6,7,8} then compute the average for each cluster and reassign the µ1 and µ2 3. Repeat 2 till convergence
  5 Commenti
Image Analyst
Image Analyst il 23 Mag 2016
Thanks for the correction - apparently I overlooked it.

Accedi per commentare.

Risposte (1)

Image Analyst
Image Analyst il 23 Mag 2016
Hint:
x1x2 = [...
1 1
1.5 2
2 1
2 0.5
4 3
5 4
6 3
6 4]
x1 = x1x2(:, 1);
x2 = x1x2(:, 2);
mu1 = [1,1];
mu2 = [2,1];
for k = 1 : 4
indexes = kmeans(x1x2, 2, 'start', [mu1;mu2])
mu1 = mean(x1x2(indexes == 1, :), 1)
mu2 = mean(x1x2(indexes == 2, :), 1)
end

Categorie

Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by