covariance of weighted multidimensional samples

3 visualizzazioni (ultimi 30 giorni)
PChoppala
PChoppala il 24 Giu 2016
Modificato: PChoppala il 24 Giu 2016
I have a multidimensional weighted sample set, e.g.
D=2; % dimension
N=100; % number of samples
x=randn(D,N); % samples
w=ones(1,N)/N; % corresponding weights
I would like to find the weighted covariance of this sample set. To obtain this, I first computed the weighted mean using the formula \mu = \sum_{i=1}^{N} w_{i} x_{i} as
mu=sum(bsxfun(@times,w,x),2);
Then I need to find the covariance according to the formula \Sigma = \sum_{i=1}^{N} w_{i} (x_{i} - \mu)*(x_{i} - \mu)'. My current code is this:
ct=bsxfun(@minus,particles,mu);
P=zeros(Dx,Dx,N);
for n=1:N,
P(:,:,n)=w(n)*(ct(:,n)*ct(:,n)');
end
Sigma=sum(P,3);
What is the computationally best coding procedure to calculate this covariance? Suggestions appreciated, thanks.

Risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by