RNNの学習において​、多次元入力での学習​は可能でしょうか?

10 visualizzazioni (ultimi 30 giorni)
Soya
Soya il 15 Set 2016
Commentato: Soya il 16 Set 2016
RNN学習において、入力が多次元の場合でも学習可能でしょうか?
↑例ではX(特徴量)が1次元であり、試しに
X{1,1}=[0.8147] のところを X{1,1}=[0.8147 0.8147]とし、2次元で学習させようとしたところ以下のエラーが出ました。
エラー: nntraining.setup>setupPerWorker (line 64)
Layer states Ai{2,1} and Layer states Ai{1,1}have different numbers of columns.
エラー: nntraining.setup (line 43) [net,data,tr,err] = setupPerWorker(net,trainFcn,X,Xi,Ai,T,EW,enableConfigure);
エラー: network/train (line 335) [net,data,tr,err] = nntraining.setup(net,net.trainFcn,X,Xi,Ai,T,EW,enableConfigure,isComposite);
多次元入力のRNNが学習可能か、また可能であればプログラムの書き方をご教授頂けたら幸いです。 宜しくお願い致します。
  3 Commenti
Soya
Soya il 15 Set 2016
thank you for answer.
my question is 'is it possible to train RNN using multi-dimensional input in MATLAB?'.
I tried 2 dimensional-input-training of RNN based in the example. but the error occurred.
Greg Heath
Greg Heath il 15 Set 2016
The data must be in the form of N pairs of "I"-dimensional "I"nput column vectors and "O"-dimensional "O"utput target column vectors
[ I N ] = size(input)
[ O N ] = size(target)
Hope this helps
Greg

Accedi per commentare.

Risposta accettata

michio
michio il 16 Set 2016
例えば、X{1,1}=[0.8147; 0.8147] と行数を出力のそれと合わせることで、複数要素の時系列入力を使うことが出来ます。ドキュメンテーションの例ですと、
[X,T] = simpleseries_dataset;
A = cell2mat(X);
AA = [A;A];
XX = mat2cell(AA,2,ones(1,100));
と入力データを作成できますので、試してみてください。
[Xs,Xi,Ai,Ts] = preparets(net,XX,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
また、
>> ntstool
で立ち上がるGUIツールがありますが、ツール上での処理を再現するコードを出力させることもできるのでおすすめです。 Neural Network Time-Series Prediction and Modeling
  1 Commento
Soya
Soya il 16 Set 2016
Michio 様
ありがとうございます。解決いたしました。

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by