Adding uneven matrices
13 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hey guys,
is there a method(aka function) by which I can add two matrices that aren't the same size and make it so that the matrices become of equivalent size by being filled with zeros in the remaining space?
Thanks
[Merged information from Answer]
It would be like ..
a=ones(150,91)*2
b=ones(141,100)*3
a+b
So, is there a way to make the matrices even but filling them with zeros? (adding 0 more rows to b, and 9 more columns to a of value=0) ...
Thanks!
2 Commenti
Walter Roberson
il 6 Mar 2012
There are over 100,000 different possible results for that calculation. You need to be very specific about which elements are to be added to which elements.
Risposte (2)
Jan
il 6 Mar 2012
a = ones(150,91)*2
b = ones(141,100)*3
c = AddFill(a, b);
function c = AddFill(a, b);
sa = size(a);
sb = size(b);
c = zeros(max(sa, sb)); % Pre-allocate
c(1:sa(1), 1:sa(2)) = a; % Assign a
c(1:sb(1), 1:sb(2)) = c(1:sb(1), 1:sb(2)) + b; % Add b
2 Commenti
Ismail Qeshta
il 14 Feb 2018
Hi Jan. Can you please let me know how to modify your code for three unequal matrices instead of two? Thank you.
Walter Roberson
il 14 Feb 2018
function d = AddFill(a, b, c);
sa = size(a);
sb = size(b);
sc = size(c);
d = zeros(max([sa; sb; sc])); % Pre-allocate
d(1:sa(1), 1:sa(2)) = a; % Assign a
d(1:sb(1), 1:sb(2)) = d(1:sb(1), 1:sb(2)) + b; % Add b
d(1:sc(1), 1:sc(2)) = d(1:sc(1), 1:sc(2)) + c; % Add c
Andrei Bobrov
il 6 Mar 2012
variant (one of 100000) :)
function out = addiffmatrix(varargin)
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],varargin(:),'un',0));
mm = arrayfun(@(i1)1:i1,sz,'un',0);
m1 = zeros(max(sz));
out = m1;
M = m1;
for j1 = 1:numel(varargin)
M(mm{j1,:}) = varargin{j1};
out = out + M;
M = m1;
end
using
a = ones(3,4)
b = 2*ones(5,3)
out = addiffmatrix(a,b)
out =
3 3 3 1
3 3 3 1
3 3 3 1
2 2 2 0
2 2 2 0
ADD
variant with "general point"
function out = addiffmatrix(cp,varargin)
% cp - coordinates of the general point in every matrix
% varargin - matrices
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],...
varargin(:),'un',0));
C = max(cp);
ij1 = bsxfun(@minus,C,cp);
mm = arrayfun(@(i1,j1)(1:i1)+j1,sz,ij1,'un',0);
out = zeros(C+max(sz-cp));
for j1 = 1:numel(varargin)
out(mm{j1,:}) = out(mm{j1,:}) + varargin{j1};
end
using
>> a
a =
1 1 1 1
1 1 1 1
>> b
b =
1.5 1.5 1.5
1.5 1.5 1.5
1.5 1.5 1.5
>> c
c =
2 2
2 2
2 2
2 2
2 2
>> cp
cp =
1 1
1 3
5 2
>> out = addiffmatrix(cp,a,b,c)
out =
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
1.5 3.5 4.5 1 1 1
1.5 1.5 2.5 1 1 1
1.5 1.5 1.5 0 0 0
>>
0 Commenti
Vedere anche
Categorie
Scopri di più su Triangulation Representation in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!