Taylor and Euler Method for ODE

9 visualizzazioni (ultimi 30 giorni)
LoveMatlab
LoveMatlab il 2 Dic 2016
Modificato: Nusaybah Ar il 8 Gen 2020
y'-sin(4t)=0 y(0)=-0.25. 1. Use Taylor method to solve up to t4 for 20 steps, h=0.1.
  1 Commento
James Tursa
James Tursa il 2 Dic 2016
What have you done so far? What specific problems are you having with your code?

Accedi per commentare.

Risposta accettata

James Tursa
James Tursa il 2 Dic 2016
MATLAB is a 0-based indexing language. So you can't have y(0) in your code. It will need to start at y(1).
y(1)= -0.25;
Also, you need to index into your t vector as t(i):
Dy(i)=sin(4*t(i));
  4 Commenti
Hanaa Yakoub
Hanaa Yakoub il 31 Dic 2019
how do you do it for 20 steps if you are only going up to the fourth derivative?
Nusaybah Ar
Nusaybah Ar il 8 Gen 2020
Modificato: Nusaybah Ar il 8 Gen 2020
I've attempted this question for the taylor method and can't seem to be getting an answer. How do i fix this code? Thanks.
h = 0.1; %Time Step
a = 0; %Starting t
b = 2; %Ending t
n = 20; %Number of Iterations
y(i) = -0.25; %Initial Condition
y1=sin(4*t)
y2=4*cos(4*t)
y3= -16*sin(4*t)
y4=-64cos(4*t)
for i = 0:h:2
y(i+1) = y(i) + y1*h + ((y2/factorial(2))*h.^2) +((y3/factorial(3))*h.^3)+(y4/factorial(4)*h.^4)
end

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by