Matlab Numerical integral improvement

6 visualizzazioni (ultimi 30 giorni)
Shan  Chu
Shan Chu il 4 Feb 2017
Modificato: Karan Gill il 17 Ott 2017
Hi, I have the integral below:
F_A_I=@(x) besselj(1,x.*3.5).*besselj(1,x.*0.5);
A=integral(F_A_I,0,Inf,'RelTol',1e-6,'AbsTol',1e-12,'ArrayValued',true);
But Matlab said:
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.7e+00. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
while Mathematica can give the answer straightforward A=0.0205664
Could you please help me to improve my code. Thanks
  1 Commento
Niels
Niels il 4 Feb 2017
probably a definition gap in your function, integral might converge to inf, in these cases matlab displays -> Reached the limit on the maximum number of intervals in use.

Accedi per commentare.

Risposta accettata

Karan Gill
Karan Gill il 13 Feb 2017
Modificato: Karan Gill il 17 Ott 2017
Updated answer for R2017b. Use int and convert the symbolic solution to floating point.
>> syms x
f = int(besselj(1, x/2)*besselj(1, (7*x)/2),x,0,inf)
f =
-(4*(100*ellipticE(1/49) - 99*ellipticK(1/49)))/(21*pi)
>> f_dbl = double(ans)
f_dbl =
0.0022
>> f_vpa = vpa(f)
f_vpa =
0.0022054352588140668793354496265733
OLD ANSWER from 13-Feb-2017
The convert to double using "double".
  2 Commenti
Walter Roberson
Walter Roberson il 14 Feb 2017
Modificato: Walter Roberson il 14 Feb 2017
vpaintegral() with up to 10000 MaxFunctionCalls complains it cannot reach required precision.
The ratio oscillates a lot.
Karan Gill
Karan Gill il 25 Set 2017
Updated answer with solution starting R2017b.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by