How to split an image datastore for cross-validation?
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Elena Ranguelova
il 10 Feb 2017
Commentato: Sajja Tulasi Krishna
il 22 Feb 2021
Hello,
The method
splitEachLabel
of an
imageDatastore
object splits an image data store into proportions per category label. How can one split an image data store for training using cross-validation and using the
trainImageCategoryCalssifier
class?
I.e. it's easy to split it in N partitions, but then some sort of mergeEachLabel functionality is needed to be able to train a classifier using cross-validation. Or is there another way of achieving that?
Regards, Elena
2 Commenti
Tripoli Settou
il 19 Apr 2018
I am also looking for an answer to a similar problem. Did you solve it?
Risposta accettata
Hamza Mehboob
il 27 Lug 2018
[imd1 imd2 imd3 imd4 imd5 imd6 imd7 imd8 imd9 imd10] = splitEachLabel(imds,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,'randomize');
partStores{1} = imd1.Files ;
partStores{2} = imd2.Files ;
partStores{3} = imd3.Files ;
partStores{4} = imd4.Files ;
partStores{5} = imd5.Files ;
partStores{6} = imd6.Files ;
partStores{7} = imd7.Files ;
partStores{8} = imd8.Files ;
partStores{9} = imd9.Files ;
partStores{10} = imd10.Files;
for i = 1 :k
i
test_idx = (idx == i);
train_idx = ~test_idx;
imdsTest = imageDatastore(partStores{test_idx}, 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
imdsTrain = imageDatastore(cat(1, partStores{train_idx}), 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Write your classification task
%%%%hamzamehboob103@gmail.com for any further help.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
4 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!