inverse power method for smallest eigenvector calculation

112 visualizzazioni (ultimi 30 giorni)
Hi,
I need to calculate the smallest eigenvector of a matrix. I use eigs(A,1,'sm') and I would like to compare the result with inverse power method and see how many iteration it takes to calculate the same result. Here is the code,
function [x,iter] = invitr(A, ep, numitr)
[m,n] = size(A);
if m~=n
disp('matrix A is not square') ;
return;
end;
x=rand(n,1);
for k = 1 : numitr
iter = k;
xhat = A \ x;
x = xhat/norm(xhat,2);
if norm((A)* x , inf) <= ep
break;
end;
end;
end
First of all after some point the eigenvector stops converging yet the result comes with a sign change. That is ;
A =
1 3 5
2 6 8
3 8 10
x1 = (by eigs)
0.8241
-0.5356
0.1844
x2 = (by inverse power method)
-0.8241
0.5356
-0.1844
iter =
100
and
x1 =
-0.8241
0.5356
-0.1844
x2 =
0.8241
-0.5356
0.1844
iter =
1000
I might have done something wrong with my function, yet I don't understand why the sign changes with eigs. I appreciate all comments.

Risposta accettata

ttopal
ttopal il 22 Feb 2017
Here is another version of inverse iteration method, where if statement works fine.
function [x,iter] = invitr(A, ep, numitr)
%INVITR Inverse iteration
%[x,iter] = invitr(A, ep, numitr) computes an approximation x, smallest
%eigenvector using inverse iteration. initial approximation is vector of ones,
%ep is the tolerance and numitr is the maximum number of iterations.
%If the iteration converged, iter is the number of iterations
%needed to converge. If the iteration did not converge,
%iter contains numitr.
%This program implements Algorithm in
%http://www.netlib.org/utk/people/JackDongarra/etemplates/node96.html
%input : Matrix A, ep and integer numitr
%output : vector x and integer iter
[m,n] = size(A);
if m~=n
disp('matrix A is not square');
return;
end;
y=ones(n,1);
for k = 1 : numitr
iter = k;
v = y/norm(y,2);
y = A\v;
th =v'*y;
if norm(y-th.*v,2) < ep*abs(th)
break;
end;
end;
x = y/th;
end

Più risposte (1)

David Goodmanson
David Goodmanson il 22 Feb 2017
Modificato: David Goodmanson il 22 Feb 2017
Hello Turker, There is nothing wrong here. The eigenvalue equation is
A*v = lambda*v
and so for the eigenvector, both v and -v are good solutions. The eigenvalue can't do that but it comes out correctly, which you can verify (since all components of your eigenvector are well away from equaling zero):
>> (A*x2)./x2
ans =
0.1689
0.1689
0.1689
compared to
>> eig(A)
ans =
17.5075
-0.6764
0.1689
  1 Commento
ttopal
ttopal il 22 Feb 2017
Oh! Thanks David. Do you think that might be the reason why my if statement doesn't help? I mean if 100 iteration were enough to calculate good eigenvector why it would continue for 1000?

Accedi per commentare.

Categorie

Scopri di più su Linear Algebra in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by