Double integration
15 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
How to perform double integration of exp(-ax-by)*(x^m)*(y^n)/(cx+dy)where x & y lies between 0 and infinity, a,b,m,n,c,d are positive real numbers.
Thank you.
0 Commenti
Risposta accettata
Mike Hosea
il 20 Mar 2012
If you have the 2012a release, just use INTEGRAL2:
>> a = 2; b = 3; m = 2; n = 3; c = 2; d = 3;
>> f = @(x,y)exp(-a*x-b*y).*(x.^m).*(y.^n)./(c*x+d*y)
f =
@(x,y)exp(-a*x-b*y).*(x.^m).*(y.^n)./(c*x+d*y)
>> integral2(f,0,inf,0,inf)
ans =
0.0030864
Be sure to use .*, .^, and ./ to do elementwise operations instead of matrix ops.
If you don't have 2012a yet, you can use the solution I presented here: http://www.mathworks.com/matlabcentral/answers/14514-double-integral-infinite-limits
4 Commenti
Mike Hosea
il 31 Mar 2012
I don't have all your input values to confirm it, but I think your integrand function is returning NaNs for some of the resulting input values. NaNs will be generated when you have overflow and try to calculate inf/inf or inf - inf.
Più risposte (2)
Hussein Thary
il 17 Giu 2023
integral
alfa=1;fai=2*pi;theata=2*pi;L=5;k=10;w=2e-2
f=@(r, fai)exp(-alfa*L./2).*exp(-j*k*r*theata*cos(fai)).*exp((-r^2./w^2)-(j*fai))
s=integral2(f,0,100,0,2*pi)
1 Commento
Walter Roberson
il 17 Giu 2023
alfa=1;fai=2*pi;theata=2*pi;L=5;k=10;w=2e-2
f=@(r, fai)exp(-alfa.*L./2).*exp(-j.*k.*r.*theata.*cos(fai)).*exp((-r.^2./w.^2)-(j.*fai));
s=integral2(f,0,100,0,2*pi)
Vedere anche
Categorie
Scopri di più su Specifying Target for Graphics Output in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!