How can I create an uncertain idpoly model if I know FIR coeffiecients and its uncertainties?
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Alexander Avdonin
il 10 Mar 2017
Risposto: Michelle Wu
il 14 Mar 2017
Hello, I need to build an uncertain idpoly model. I have the FIR coefficients (e.g. B(z)=[0 1 2 3 2 1]) and the sampling time (e.g. Ts=1 s), then I build a idpoly model according to the MATLAB help:
sys=idpoly([],[0 1 2 3 2 1],[],[],[],[],1)
Now the question: I also have an uncertainty in each FIR coefficient which is expressed in standard deviation: std=[0 1e-3 2e-3 3e-3 2e-3 1e-3]. How can I incorporate this knowledge in the idpoly model?
0 Commenti
Risposta accettata
Michelle Wu
il 14 Mar 2017
You may want to use function ' setcov ' to set covariance data in identified model. First, use function 'idpoly' to obtain the identified model (sys in your case). Then, use the following syntax:
sys1 = setcov(sys,cov)
where cov is the parameter covariance matrix. cov could be represented by an np-by-np semi-positive definite symmetric matrix, where np is equal to the number of parameters of sys (5 in your case). Thus, before using 'setcov', you also need to convert the standard deviation into a covariance matrix. To do so, you may consider using function ' corr2cov ' if you have access to the Financial Toolbox.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Uncertain Models in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!