Error using integral: A and B must be floating-point scalars
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hey there,
I try to solve some equations where I have to use integrals. I'm not very experienced with function handles, which is where I assume to get the error.
function opt_barrier = derive_p3(beta, lambda, d)
popt = 0;
f=cell(100);
Copt=cell(100);
f0 = @(x,p) x-p+((lambda*beta*d-1)/((1-beta)*lambda));
f{1} = @(x,p) (beta*(beta + lambda*(d+(beta-1)*p)-2))/((1-beta)*lambda)+beta*x - ((1-beta)/lambda) *exp(lambda*p-lambda*x);
syms p;
syms Ctilde;
C= (beta-1)*exp(lambda*p)/lambda;
Copt{1} = C;
Vp= (lambda*beta*d-1)/((1-beta)*lambda);
p_cand=solve(exp(-lambda*(p+d))==((beta-1)^2+beta*(beta-1)^2*(-exp(-lambda*d))*(lambda*p-2))/(beta^2*(2*beta+lambda*(d+(beta-1)*p)-3)), p);
if 0 <=p_cand & p_cand <= d
popt = p_cand;
else
i=1;
while popt == 0;
integrand = @ (x,p) f{i}(x,p).*exp(lambda*x);
Copt{i+1} = @(x,p) solve(integral(@(t) integrand(t+d,p),0, p-i.*d).*exp(-lambda.*(p-i.*d))+ Ctilde == f{i}(p-i.*d, p), Ctilde);
helpfunc1 = @(x,p) exp(-lambda.*x);
intop = @(x,p) integral(@(t) integrand(t+d,p),0,x);
f{i+1} = @(x,p) intop(x,p)*helpfunc1(x,p)+ Copt{i+1}(x,p);
term= @(x,p)0;
for j=1:i
term = @(x,p) term(x,p) + integral(@(y) f{i}(y,p).*lambda.*exp(lambda.*(y-d-x)),p-j.*d, p-(j-1).*d);
end
x=p-i.*d;
helpfunc2 = @(y,p) lambda.*exp(lambda.*(y-d-x));
integrand1 = @(y,p) f{i+1}(y,p)*helpfunc2(y,p);
integrandlast = @(y,p) f0(y,p)*helpfunc2(y,p);
cand_p = solve(f{i+1}(x,p)== beta.*integral(@(y)integrand1(y,p), 0, 1) + beta.*term(x,p) + beta.*int(integrandlast,y, p, d+x), p)
popt=1;
end
end
opt_barrier=popt;
end
In the while-loop, I get the error 'Error using integral:A and B must be floating-point scalars' where I calculate p_cand, the rest is working. I assume that the integral function has problems with the 'syms' of p, but I don't know how to solve equations without using syms.
Thanks for your help!
1 Commento
Arif Ullah khan
il 30 Set 2018
term = @(x,p) term(x,p) + integral(@(y) f{i}(y,p).*lambda.*exp(lambda.*(y-d-x)),p-j.*d, p-(j-1).*d);
p must be a scalar value in order to make the limits of integral scalar. but you defined it as symbolic variable
syms p;
if you are doing symbolic integration then int function will work instead of integral
Risposte (1)
Karan Gill
il 5 Giu 2017
Modificato: Karan Gill
il 17 Ott 2017
To represent integration with symbolic variables, use "int" instead of "integral".
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!