Info
Questa domanda è chiusa. Riaprila per modificarla o per rispondere.
how to simulate a function
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
i'm trying to simulate this function "pd" against "lnd" by accept reject monte carlo method but it takes forever and nothing comes out
M=8;
N=32;
K=14;
c=2;
s=1;
T=18.623390280430364437245197384232;
lnd=0:5:30;
pd1=(2*K*nchoosek(N/2,K)*((gamma(K+i)*gamma(N-K+i+1+T./(1+lnd)))./(gamma(N+1+T./(1+lnd)))-...
(symsum(nchoosek(N/2,i)*(gamma(K+i)*gamma(N-K-i+1+T./(1+lnd)))./(gamma(N+1+T./(1+lnd))), i, K, (N/2)))));
%lnd=0:5:30;
pd=(symsum(nchoosek(M,i)*(pd1).^(i).* (1-(pd1)).^(M-i), i, s, M));
O=10^7;
Mx=1.2*max(pd);
lndi=10*rand(1,O);
pj=10*rand(1,O);
pd1i=2*K*nchoosek(N/2,K)*((gamma(K+i)*gamma(N-K+i+1+T./(1+lndi)))./(gamma(N+1+T./(1+lndi)))-...
(symsum(nchoosek(N/2,i)*(gamma(K+i)*gamma(N-K-i+1+T./(1+lndi)))./(gamma(N+1+T./(1+lndi))), i, K, (N/2))));
f_lndi=(symsum(nchoosek(M,i)*(pd1i).^(i)* (1-(pd1i)).^(M-i), i, s, M));
comp=pj*Mx;
result=f_lndi>=comp;
index=find(result);
lnd_new=lndi(1,index);
[pd1,lnd1]=hist(lnd_new,100);
dlnd=(lnd1(2)-lnd1(1));
h=(pd1/length(lnd_new))/dlnd;
plot(lnd1,h,'b.');
0 Commenti
Risposte (1)
Walter Roberson
il 31 Mag 2017
As I told you in https://www.mathworks.com/matlabcentral/answers/342612-why-does-it-take-forever-to-solve-a-function, do not use symsum() for adding definite symbolic terms.
0 Commenti
Questa domanda è chiusa.
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!