How can I solve A*X + X*B = C equation for X? where A, B&C are 2*2 matrixes.
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
HEmant kuralkar
il 1 Giu 2017
Risposto: Karan Gill
il 5 Giu 2017
A = [1 1;2 3] B= [5 6;7 8] C = [11 12;13 14] Syms X; Eqn = A*X + X*B == C; solve(Eqn,X); % I'm facing difficulties to define matrix X as syms
0 Commenti
Risposta accettata
Più risposte (2)
Andrei Bobrov
il 1 Giu 2017
>> A = [1 1;2 3];
B= [5 6;7 8];
C = [11 12;13 14];
X = reshape(sym('x',[4,1],'real'),2,[]);
v = A*X + X*B - C;
v = v(:);
f = matlabFunction(v,'Vars',{X});
x = fsolve(f,[1;1;1;1])
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
x =
2.1809
-0.1489
-0.2766
1.4043
>> X = reshape(x,2,[]);
>> v = A*X + X*B - C
v =
1.0e-14 *
-0.3553 -0.3553
-0.1776 -0.5329
>>
5 Commenti
Andrei Bobrov
il 1 Giu 2017
Modificato: Andrei Bobrov
il 1 Giu 2017
Same
>> A = [1 1;2 3] ;
B= [5 6;7 8] ;
C = [11 12;13 14] ;
syms x1 y1 x2 y2
X = [x1 y1 ; x2 y2] ;
eqn = A*X+X*B == C ;
D = solve(eqn);
X = reshape(sym('x',[4,1],'real'),2,[]);
v = A*X + X*B - C;
v = v(:);
f = matlabFunction(v,'Vars',{X});
x = fsolve(f,[1;1;1;1]);
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
>> structfun(@double,D) - x
ans =
1.0e-14 *
0.6217
-0.4469
-0.4219
0.3775
>>
Karan Gill
il 5 Giu 2017
You can solve this with the symbolic toolbox if you declare "X" as a matrix:
>> X = sym('x%d',[2 2])
X =
[ x11, x12]
[ x21, x22]
Then solve as usual:
>> A = [1 1;2 3];
B= [5 6;7 8];
C = [11 12;13 14];
>> eqn = A*X + X*B == C
eqn =
[ 6*x11 + 7*x12 + x21 == 11, 6*x11 + 9*x12 + x22 == 12]
[ 2*x11 + 8*x21 + 7*x22 == 13, 2*x12 + 6*x21 + 11*x22 == 14]
>> sol = solve(eqn,X)
sol =
struct with fields:
x11: [1×1 sym]
x21: [1×1 sym]
x12: [1×1 sym]
x22: [1×1 sym]
>> solX = [sol.x11 sol.x12; sol.x21 sol.x22]
solX =
[ 205/94, -13/47]
[ -7/47, 66/47]
>> vpa(solX)
ans =
[ 2.1808510638297872340425531914894, -0.27659574468085106382978723404255]
[ -0.1489361702127659574468085106383, 1.4042553191489361702127659574468]
0 Commenti
Vedere anche
Categorie
Scopri di più su Systems of Nonlinear Equations in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!