Error using sqpInterface Objective function is undefined at initial point.
32 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Rajan Pandya
il 27 Giu 2017
Modificato: Scott Pham
il 1 Dic 2019
while using nmpc example of the inverted pendulum.I am getting this error. I just change model to double pendulum model in pendulumCT.m file. what should I do?
Error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 808)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in nmpc (line 52)
uopt = fmincon(COSTFUN,uopt,[],[],[],[],LB,UB,CONSFUN,options);
0 Commenti
Risposta accettata
Jacob Bean
il 19 Lug 2017
First try evaluating your cost function with your initial guess and see if you can actually get an output. I believe that fmincon expects the output of the cost function to be a real scalar value. Double check that you're not outputting a complex quantity.
1 Commento
Scott Pham
il 1 Dic 2019
Modificato: Scott Pham
il 1 Dic 2019
Hi!
I am having the same issue. My cost function is complex variable scalar function, relative error Erel which should be close to zero. I supplied gradient of cost function qV with respest to position, I haven't supplr constrains on material properties yet. I basically already solved inverse problem and minimized Erel, I need to find a configuration that satisfies the constrains for both position of configuration and material properties of each scatterrer. In the past I used fmincon for real function but this time I am solving inverse problem, and cost function is complex values. Can fmincon deal with it? I have some outputs and error message below.
Thanks in advance,
Feruza. I was not able to inlcude my info. My email is: aferuza@gmail.com
Erel =
2.4496e-12 - 4.3748e-15i
qV =
1.0e-11 *
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
-0.1168 + 0.0034i
0.0430 - 0.0004i
Error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 833)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] =
sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in main_InverseScatteringPattern_fmincon (line 176)
[x,fval,exitflag,output,grad] =
fmincon(objective,x0,A,b,Aeq,beq,lb,ub,nonlincon,options);
Più risposte (3)
kamilya MIMOUNI
il 26 Ott 2019
error using sqpInterface
Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 823)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpInterface(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
Error in Test3 (line 89)
Control_optimal = fmincon(problem)
i have this problem in matlab
please help me
0 Commenti
kamilya MIMOUNI
il 26 Ott 2019
function Test3
clear;close all; clc
% For starting
fprintf ( 1, '\n' );
fprintf ( 1, 'Test1:\n' );
fprintf ( 1, ' MATLAB version:\n' );
fprintf ( 1, ' A program to demonstrate the finite element method.\n' );
% Geometry data
rin = 0.2; rex = 1;
gd1 = [1;1.6;0;rex];
gd2 = [1;1.6;0;rin];
gd = [gd1,gd2];
ns = (char('Cext','Cint'))';
sf = 'Cext - Cint';
[dl, bt] = decsg(gd, sf, ns);
model = createpde;
geometryFromEdges(model,dl);
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
msh = generateMesh(model,'Hmax',0.05,'GeometricOrder','linear','Jiggle','on');
[p,e,t] = meshToPet(msh);
% [p,e,t] = refinemesh(dl,p,e,t);
% return
coordinates = p';
elements3 = t(1:3,:)';
Ne = findNodes(msh,'region','Edge',(1:4));
Ni = findNodes(msh,'region','Edge',(5:8));
neumann = [Ni(:),[Ni(2:end)';Ni(1)]];
dirichlet = [Ne(:),[Ne(2:end)';Ne(1)]];
BoundNodes = unique(dirichlet);
% Export Initial Data
load flux_initial.mat flux_initial resultss Nee
uintrp = interpolateSolution(resultss,p(1,:),p(2,:));
uintrp(Ne) = 1;
[uintrpx,uintrpy] = pdegrad(p,t,uintrp); % au centre des triangles
uintrpxn = pdeprtni(p,t,uintrpx); % au noeuds
uintrpyn = pdeprtni(p,t,uintrpy); % au noeuds
Nx = @(z)2*z(1,:);
Ny = @(z)2*z(2,:);
z = p(:,Ne);
nx = Nx(z); nx = nx(:);
ny = Ny(z); ny = ny(:);
epsilon = 3/10;
h_flux = 1./(sqrt(nx.^2+ny.^2).*sqrt(z(1,:)'.^2+z(2,:)'.^2).*uintrpxn(Ne).*nx+uintrpyn(Ne).*ny);
% Direct problem
RHS_step = zeros(size(elements3,1));
a_x = zeros(size(elements3,1));
c_x = zeros(size(elements3,1));
Control = zeros(size(neumann,1),1);
for j=1:size(elements3,1)
xc = sum(coordinates(elements3(j,:),:))/3;
RHS_step(j) = 0;
c_x(j) = 1./(1+epsilon*xc(1));
a_x(j) = 0;
end
psi_d = ones(size(BoundNodes,1),1); % fct g sur Gamma_ex
for j=1:size(neumann,1)
x_m = sum(coordinates(neumann(j,:),:))/2; % vecteur ligne: coordonnées du milieu du segment
Control(j) = 1; % le controle v sur Gamma_in
end
[psi,psi_flux] = Direct_Problem(elements3,neumann,coordinates,c_x,a_x,RHS_step,Control,psi_d,BoundNodes,p,t, ...
epsilon,nx,ny,Ne,z);
% Cost function
regu = 1/1000;
Integrand = psi_flux - h_flux;
Cost_J = Cost_Function(Control,Integrand,coordinates,Ne,Ni,rex,rin,regu);
if(Cost_J==0)
disp('Your intial guess v = 1 is exactely your solution')
disp('There is no need for optimization')
end
disp('fmincon start')
% options = optimoptions('fmincon','Display','iter','Algorithm','sqp','PlotFcns', ...
% {@optimplotfval,@optimplotfirstorderopt},'TolFun',4.0e-4);
% options = optimoptions(@fmincon,'GradObj','on','Display','iter','TolFun',1.0e-4, ...
% 'PlotFcns',{@optimplotfval,@optimplotfirstorderopt});
lb = 4.0e-2*ones(size(Control,1),1);
ub = 5*ones(size(Control,1),1);
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
problem.options = options;
problem.solver = 'fmincon';
problem.objective = @(u_epsilon)Moncef_Cost_Function(u_epsilon,elements3,neumann,coordinates,c_x,a_x,RHS_step, ...
BoundNodes,p,t,epsilon,nx,ny,Ne,Ni,z,rex,rin,regu,h_flux);
problem.x0 = Control;
problem.nonlcon = [];
Control_optimal = fmincon(problem)
Control_optimal = fmincon(@(u_epsilon)Moncef_Cost_Function(u_epsilon,elements3,neumann,coordinates,c_x,a_x,RHS_step, ...
BoundNodes,p,t,epsilon,nx,ny,Ne,Ni,z,rex,rin,regu,h_flux), ...
Control,[],[],[],[],lb,ub,[],options);
% Retour au probleme direct final
[psi,psi_flux] = Direct_Problem(elements3,neumann,coordinates,c_x,a_x,RHS_step,Control_optimal,psi_d,BoundNodes,p,t, ...
epsilon,nx,ny,Ne,z);
% ep = 0.2;
% Nb = findNodes(msh,'box',[-1-ep -1],[-0.5 0.5]);
%[i,c] = pdesdp(p,e,t,sdl);
figure(10)
pdemesh(model_initial)
hold on
plot(msh.Nodes(1,Nee),msh.Nodes(2,Nee),'or','MarkerFaceColor','g')
psi_full = full(psi);
psi_max = max(psi_full(Nee));
indice2 = find(psi_full<=psi_max+0.07 & psi_full>=psi_max-0.07);
k = convhull(p(1,indice2),p(2,indice2));
figure(12)
pdemesh(model)
hold on
plot(p(1,k),p(2,k),'r-')
figure(11)
pdegplot(model)
hold on
plot(msh.Nodes(1,indice2),msh.Nodes(2,indice2),'.r','MarkerFaceColor','r')
0 Commenti
kamilya MIMOUNI
il 26 Ott 2019
function probleme_initial
close all; clear all; clc
R0 = 3/2;
a1 = 0.5;
N = 40;
angles = 0:2*pi/N:2*pi; angles = angles(1:end-1);
absi = (R0*sqrt(1+2*a1*cos(angles)/R0)-R0)./a1; absi = absi(:);
ord = a1*R0*sin(angles)./a1; ord = ord(:);
% Geometry data
poly = [absi,ord];
gd1 = [2;length(poly);poly(:,1);poly(:,2)];
abs = linspace(-1,1,N); abs = abs(end:-1:1);
abs = [abs,abs(end-1:-1:2)];
poly1 = [absi(:),ord(:)];
%======================================
ep = 0.1;
abs2 = [-1;-1;-1-ep;-1-ep];
ord2 = [-0.5;0.5;0.5;-0.5];
poly2 = [abs2,ord2];
gd2 = zeros(size(gd1));
gd2(1) = 2;
gd2(2) = length(poly2);
gd2(3:length(poly2(:,1))+2) = poly2(:,1);
gd2(length(poly2(:,1))+3:length(poly2(:,1))+2+length(poly2(:,2))) = poly2(:,2);
% gd2 = [2;length(poly2);poly2(:,1);poly2(:,2)];
%=============================================
gd3 = zeros(size(gd1)); gd3(1) = 1; gd3(4) = 2;
gd = [gd1,gd3];
ns = (char('D','Cext'))';
sf = 'Cext - D';
[dl, bt] = decsg(gd, sf, ns);
model= createpde;
geometryFromEdges(model,dl);
pdegplot(model,'EdgeLabels','on','FaceLabels','on')
% return
applyBoundaryCondition(model,'dirichlet','Edge',(41:44),'h',1,'r',1);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:198),'h',1,'r',1);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',20);
% applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',40);
applyBoundaryCondition(model,'dirichlet','Edge',(1:40),'h',1,'r',50);
axis equal
msh = generateMesh(model,'Hmax',0.05,'GeometricOrder','linear','Jiggle','on');
[p,e,t] = meshToPet(msh);
z1 = p(:);
C=1./sqrt(z1(1,:)'.^2+z1(2,:)'.^2);
specifyCoefficients(model, 'm', 0, 'd', 0, 'c', C, 'a', 0, 'f', 0);
resultss = solvepde(model);
u= resultss.NodalSolution;
figure(3)
pdeplot(p, e, t, 'xydata', u, 'contour', 'on', 'mesh', 'off');
axis equal
ux = resultss.XGradients;
uy = resultss.YGradients;
Nee = findNodes(msh,'region','Edge',(41:44));
psi_fr = psi(Nee);
Nx = @(z) 2*z(1,:);
Ny = @(z) 2*z(2,:);
z = p(:,Nee);
nx = Nx(z); nx = nx(:);
ny = Ny(z); ny = ny(:);
Flux11 = (ux(Nee).*nx+uy(Nee).*ny)./sqrt(nx.^2+ny.^2);
Flux1 = Flux11./sqrt(z(1,:)'.^2+z(2,:)'.^2);
flux_initial = [z',Flux1];
save flux_initial.mat flux_initial resultss Nee
0 Commenti
Vedere anche
Categorie
Scopri di più su General PDEs in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!