Neural Network Test Data

5 visualizzazioni (ultimi 30 giorni)
giorgio giorgio
giorgio giorgio il 20 Lug 2017
Commentato: Greg Heath il 20 Lug 2017
Hi everyone; I have the this neural Network made by
the training Function is a Bayesian regularization backpropagation. I don't understand why the test value are not good even if the training data are almost perfect

Risposte (1)

Greg Heath
Greg Heath il 20 Lug 2017
It looks like a case of overtraining an overfit net. If you have O-dimensional outputs and use the default Ntrn ~ 0.7*N then you have
Ntrneq = 0.7*N*O = 0.63*N training equations
Whereas the number of unknown weights is
Nw = (I+1)*H1+(H1+1)*H2+(H2+1)*H3 +(H3+1)*O
= 3*25++26*15+16*15+16*9 ~849
N >> 849/.63 ~ 1348 So how much data do you have?
Using Bayesian regularization should help.
However insufficient details.
Greg
  1 Commento
Greg Heath
Greg Heath il 20 Lug 2017
I'm old fashioned and guided by the following principle
1. Make life as pleasant as possible:
a. Don't worry if you can't model more than 99%
of the average target variance
b. Use as few hidden layers as possible
c. Use as few hidden nodes as possible.
2. Search both NEWSREADER and ANSWERS with
greg Hmin Hmax
Hope this helps.
Greg

Accedi per commentare.

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by