Azzera filtri
Azzera filtri

How to perform stratified 10 fold cross validation for classification in MATLAB?

8 visualizzazioni (ultimi 30 giorni)
My implementation of usual K-fold cross-validation is pretty much like:
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
But To ensure that the training, testing, and validating dataset have similar proportions of classes (e.g., 20 classes).I want use stratified sampling technique.Basic purpose is to avoid class imbalance problem.I know about SMOTE technique but i want to apply this one.
  3 Commenti

Accedi per commentare.

Risposta accettata

Tom Lane
Tom Lane il 25 Lug 2017
If you have the Statistics and Machine Learning Toolbox, consider the cvpartition function. It can define stratified samples.
  3 Commenti

Accedi per commentare.

Più risposte (1)

ashik khan
ashik khan il 18 Nov 2018
What are the value of B and T_new1 ??
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end

Categorie

Scopri di più su Get Started with Statistics and Machine Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by